Deep Learning of Dynamical System Parameters from Return Maps as Images (2306.11258v1)
Abstract: We present a novel approach to system identification (SI) using deep learning techniques. Focusing on parametric system identification (PSI), we use a supervised learning approach for estimating the parameters of discrete and continuous-time dynamical systems, irrespective of chaos. To accomplish this, we transform collections of state-space trajectory observations into image-like data to retain the state-space topology of trajectories from dynamical systems and train convolutional neural networks to estimate the parameters of dynamical systems from these images. We demonstrate that our approach can learn parameter estimation functions for various dynamical systems, and by using training-time data augmentation, we are able to learn estimation functions whose parameter estimates are robust to changes in the sample fidelity of their inputs. Once trained, these estimation models return parameter estimations for new systems with negligible time and computation costs.
- Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.: GraphCast: Learning Skillful Medium-Range Global Weather Forecasting (3) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., Diego de las Casas, Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., Riedmiller, M.: Magnetic control of tokamak plasmas through deep reinforcement learning 602(7897), 414–419 (4) Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., Diego de las Casas, Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., Riedmiller, M.: Magnetic control of tokamak plasmas through deep reinforcement learning 602(7897), 414–419 (4) Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., Diego de las Casas, Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., Riedmiller, M.: Magnetic control of tokamak plasmas through deep reinforcement learning 602(7897), 414–419 (4) Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Söderström, T., Stoica, P.: System Identification. Prentice Hall (5) Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Alvin, K.F., Robertson, A.N., Reich, G.W., Park, K.C.: Structural system identification: From reality to models 81(12), 1149–1176 (6) Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology 15(1), 45–50 17113776 (7) Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Ljung, L.: Perspectives on system identification 34(1), 1–12 (8) Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: Strategies, perspectives and challenges 11(91), 20130505 (9) Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems 99(2), 1709–1761 (10) Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Konnur, R.: Estimation of all model parameters of chaotic systems from discrete scalar time series measurements 346(4), 275–280 (11) Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm 76(1), 016209 (12) Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm 38(4), 3238–3245 (13) Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Parameter identification of chaotic systems using improved differential evolution algorithm 61(1), 29–41 (14) Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Modares, H., Alfi, A., Fateh, M.-M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization 37(5), 3714–3720 (15) Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints 24(10), 1450134 (16) Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Mousazadeh, A., Shekofteh, Y.: Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems 94, 103817 (17) Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Shekofteh, Y., Jafari, S., Sprott, J.C., Hashemi Golpayegani, S.M.R., Almasganj, F.: A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems 20(2), 469–481 (18) Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Shekofteh, Y., Jafari, S., Rajagopal, K., Pham, V.-T.: Parameter Identification of Chaotic Systems Using a Modified Cost Function Including Static and Dynamic Information of Attractors in the State Space 38(5), 2039–2054 (19) Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Shekofteh, Y., Jafari, S., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems 23(13), 4765–4776 (20) Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Mousazadeh, A., Shekofteh, Y.: Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space 96(1), 3 (21) Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. vol. 56 (22) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (23) Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Biscani, F., Izzo, D.: Revisiting high-order Taylor methods for astrodynamics and celestial mechanics 504(2), 2614–2628 (24) Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning 6(1), 60 (25) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (26) Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456. PMLR (27) Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (28) TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- TorchVision maintainers and contributors: TorchVision: PyTorch’s Computer Vision Library (29) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (30) Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Hénon, M.: A two-dimensional mapping with a strange attractor 50(1), 69–77 (31) Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s Machine 52(10), 895–903 (32) Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Casasayas, J., Nunes, A., Tufillaro, N.: Swinging Atwood’s Machine : Integrability and dynamics 51(16), 1693–1702 (33) Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 1st edn. Cambridge University Press (34) Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Shen, R., Bubeck, S., Gunasekar, S.: Data Augmentation as Feature Manipulation (35) Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning 3(1), 9 (36) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80
- Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model 20(1), 61–80