Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-resolving sparse observations in partial differential equations: A physics-constrained convolutional neural network approach (2306.10990v1)

Published 19 Jun 2023 in physics.flu-dyn and cs.LG

Abstract: We propose the physics-constrained convolutional neural network (PC-CNN) to infer the high-resolution solution from sparse observations of spatiotemporal and nonlinear partial differential equations. Results are shown for a chaotic and turbulent fluid motion, whose solution is high-dimensional, and has fine spatiotemporal scales. We show that, by constraining prior physical knowledge in the CNN, we can infer the unresolved physical dynamics without using the high-resolution dataset in the training. This opens opportunities for super-resolution of experimental data and low-resolution simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016.
  2. C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in European Conference on Computer Vision, 2014, pp. 184–199.
  3. W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 9 2016.
  4. W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep learning for single image super-resolution: A brief review,” IEEE Transactions on Multimedia, vol. 21, pp. 3106–3121, 12 2019.
  5. B. Liu, J. Tang, H. Huang, and X.-Y. Lu, “Deep learning methods for super-resolution reconstruction of turbulent flows,” Physics of Fluids, vol. 32, p. 25105, 2020.
  6. I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9, pp. 987–1000, 1998.
  7. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2 2019.
  8. N. Doan, W. Polifke, and L. Magri, “Short-and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach,” Proceedings of the Royal Society A, vol. 477, no. 2253, p. 20210135, 2021.
  9. H. Eivazi and R. Vinuesa, “Physics-informed deep-learning applications to experimental fluid mechanics,” 2022. [Online]. Available: https://arxiv.org/abs/2203.15402
  10. A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney, “Characterizing possible failure modes in physics-informed neural networks,” Advances in Neural Information Processing Systems, vol. 34, pp. 26 548–26 560, 2021.
  11. T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Schönlieb, “Can physics-informed neural networks beat the finite element method?” arXiv preprint arXiv:2302.04107, 2023.
  12. D. Kelshaw and L. Magri, “Uncovering solutions from data corrupted by systematic errors: A physics-constrained convolutional neural network approach,” 2023.
  13. H. Gao, L. Sun, and J.-X. Wang, “Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels,” Physics of Fluids, vol. 33, p. 073603, 7 2021.
  14. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354–377, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320317304120
  15. Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time series.”
  16. L. Magri, “Introduction to neural networks for engineering and computational science,” 1 2023.
  17. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
  18. T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with convolutional neural networks for fluid dynamics,” Journal of Fluid Mechanics, vol. 882, p. A13, 2020.
  19. E. D. Fylladitakis, “Kolmogorov flow: Seven decades of history,” Journal of Applied Mathematics and Physics, vol. 6, pp. 2227–2263, 2018.
  20. D. Kelshaw, “Kolsol,” https://github.com/magrilab/kolsol, 2022.
  21. F. Ruan and D. McLaughlin, “An efficient multivariate random field generator using the fast fourier transform,” Advances in Water Resources, vol. 21, no. 5, pp. 385–399, 1998.
  22. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.