Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tame a Wild Camera: In-the-Wild Monocular Camera Calibration (2306.10988v2)

Published 19 Jun 2023 in cs.CV

Abstract: 3D sensing for monocular in-the-wild images, e.g., depth estimation and 3D object detection, has become increasingly important. However, the unknown intrinsic parameter hinders their development and deployment. Previous methods for the monocular camera calibration rely on specific 3D objects or strong geometry prior, such as using a checkerboard or imposing a Manhattan World assumption. This work solves the problem from the other perspective by exploiting the monocular 3D prior. Our method is assumption-free and calibrates the complete $4$ Degree-of-Freedom (DoF) intrinsic parameters. First, we demonstrate intrinsic is solved from two well-studied monocular priors, i.e., monocular depthmap, and surface normal map. However, this solution imposes a low-bias and low-variance requirement for depth estimation. Alternatively, we introduce a novel monocular 3D prior, the incidence field, defined as the incidence rays between points in 3D space and pixels in the 2D imaging plane. The incidence field is a pixel-wise parametrization of the intrinsic invariant to image cropping and resizing. With the estimated incidence field, a robust RANSAC algorithm recovers intrinsic. We demonstrate the effectiveness of our method by showing superior performance on synthetic and zero-shot testing datasets. Beyond calibration, we demonstrate downstream applications in image manipulation detection & restoration, uncalibrated two-view pose estimation, and 3D sensing. Codes, models, and data will be held in https://github.com/ShngJZ/WildCamera.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com