Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

INC: A Scalable Incremental Weighted Sampler (2306.10824v1)

Published 19 Jun 2023 in cs.LO

Abstract: The fundamental problem of weighted sampling involves sampling of satisfying assignments of Boolean formulas, which specify sampling sets, and according to distributions defined by pre-specified weight functions to weight functions. The tight integration of sampling routines in various applications has highlighted the need for samplers to be incremental, i.e., samplers are expected to handle updates to weight functions. The primary contribution of this work is an efficient knowledge compilation-based weighted sampler, INC, designed for incremental sampling. INC builds on top of the recently proposed knowledge compilation language, OBDD[AND], and is accompanied by rigorous theoretical guarantees. Our extensive experiments demonstrate that INC is faster than state-of-the-art approach for majority of the evaluation. In particular, we observed a median of 1.69X runtime improvement over the prior state-of-the-art approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.