Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Form of Covariate Adjustment in Randomized Clinical Trials (2306.10213v2)

Published 16 Jun 2023 in stat.ME

Abstract: In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that uses linear, generalized linear, and non-parametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, {efficiency gain, and applicability of AIPW estimators}. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability {under different randomization schemes}, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. Our methods are implemented in the R package RobinCar.

Citations (3)

Summary

We haven't generated a summary for this paper yet.