Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Catastrophic Forgetting in the Context of Model Updates (2306.10181v1)

Published 16 Jun 2023 in cs.LG and cs.AI

Abstract: A large obstacle to deploying deep learning models in practice is the process of updating models post-deployment (ideally, frequently). Deep neural networks can cost many thousands of dollars to train. When new data comes in the pipeline, you can train a new model from scratch (randomly initialized weights) on all existing data. Instead, you can take an existing model and fine-tune (continue to train) it on new data. The former is costly and slow. The latter is cheap and fast, but catastrophic forgetting generally causes the new model to 'forget' how to classify older data well. There are a plethora of complicated techniques to keep models from forgetting their past learnings. Arguably the most basic is to mix in a small amount of past data into the new data during fine-tuning: also known as 'data rehearsal'. In this paper, we compare various methods of limiting catastrophic forgetting and conclude that if you can maintain access to a portion of your past data (or tasks), data rehearsal is ideal in terms of overall accuracy across all time periods, and performs even better when combined with methods like Elastic Weight Consolidation (EWC). Especially when the amount of past data (past 'tasks') is large compared to new data, the cost of updating an existing model is far cheaper and faster than training a new model from scratch.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com