Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shor's Algorithm Does Not Factor Large Integers in the Presence of Noise (2306.10072v1)

Published 15 Jun 2023 in quant-ph and cs.DM

Abstract: We consider Shor's quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form $pq$ when the noise exceeds a vanishingly small level in terms of $n$ -- the number of bits of the integer to be factored, where $p$ and $q$ are from a well-defined set of primes of positive density. We further prove that with probability $1 - o(1)$ over random prime pairs $(p,q)$, Shor's factoring algorithm does not factor numbers of the form $pq$, with the same level of random noise present.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Scott Aaronson. Quantum Computing Since Democritus. Cambridge University Press. 2013
  2. L. M. Adleman and D. R. Heath-Brown The first case of Fermat’s last theorem Inventiones mathematicae (1985). Volume: 79, pp. 409-416.
  3. Claudio Albanese and Stephan Lawi. Time Quantization and q𝑞qitalic_q-deformations. Journal of Physics A. 37 (8): 2983–2987.
  4. Eric Bach. Private communications.
  5. Piero Caldirola. The introduction of the chronon in the electron theory and a charged lepton mass formula. Lettere al Nuovo Cimento. 27 (8): 225–228.
  6. P. Erdös and A. Odlyzko. On the density of odd integers of the form (p−1)/2−n𝑝1superscript2𝑛(p-1)/2^{-n}( italic_p - 1 ) / 2 start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT and related questions. Journal of number theory, vol. 11 (1979) pp 257-263.
  7. Ruy A. H. Farias and Erasmo Recami. Introduction of a Quantum of Time (”chronon”), and its Consequences for Quantum Mechanics. arXiv:quant-ph/9706059
  8. Étienne Fouvry. Théorème de Brun-Titchmarsh; application au théorème der Fermat. Inventiones mathematicae (1985). Volume: 79, pp. 383-408
  9. A. G. Fowler and L. C. L. Hollenberg. Scalability of Shor’s algorithm with a limited set of rotation gates. Phys. Rev. A 70, 032329 (2004).
  10. Gil Kalai. https://gilkalai.wordpress.com/2022/05/26/waging-war-on-quantum/
  11. Gottesman, Daniel (2009). ”An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation”. arXiv:0904.2557
  12. Johan Håstad, A. W. Schrift and Adi Shamir. The Discrete Logarithm Modulo a Composite Hides O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) Bits. J. Comput. Syst. Sci. 47(3): 376-404 (1993)
  13. Christopher Hooley. Applications of sieve methods to the theory of numbers, Cambridge University Press. 1976.
  14. Leonid Levin. https://www.cs.bu.edu/fac/lnd/expo/qc.htm
  15. Henry Margenau. The Nature of Physical Reality. McGraw-Hill. (1950).
  16. H. L. Montgomery and R. C. Vaughan. The large sieve. Mathematika 20: 119-134. 1973.
  17. H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory I: Classical Theory. Cambridge Studies in Advanced Mathematics, Series Number 97. Cambridge University Press 2006.
  18. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of applied cryptography. Boca Raton: CRC Press. 1997.
  19. Y. S. Nam and R.  Blümel. Scaling laws for Shor’s algorithm with a banded quantum Fourier transform. PHYSICAL REVIEW A 87, 032333 (2013)
  20. Y. S. Nam and R.  Blümel. Performance scaling of the quantum Fourier transform with defective rotation gates. July 2015. Quantum Information & Computation 15(9-10):721-736
  21. Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. Cambridge University Press. 2000 (first ed.) 2010 (second ed.)
  22. Athanasios Papoulis. Probability, Random Variables and Stochastic Processes (4th ed.). p. 148.
  23. Peter Shor. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124–134. (1994).
  24. Peter Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing. Vol. 26, Iss. 5 (1997)10.1137/S0097539795293172
  25. Peter Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A. 52 (4): R2493–R2496. (1995)
Citations (6)

Summary

We haven't generated a summary for this paper yet.