Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Prompting Techniques for Zero- and Few-Shot Visual Question Answering (2306.09996v2)

Published 16 Jun 2023 in cs.CV and cs.CL

Abstract: In this paper, we explore effective prompting techniques to enhance zero- and few-shot Visual Question Answering (VQA) performance in contemporary Vision-LLMs (VLMs). Central to our investigation is the role of question templates in guiding VLMs to generate accurate answers. We identify that specific templates significantly influence VQA outcomes, underscoring the need for strategic template selection. Another pivotal aspect of our study is augmenting VLMs with image captions, providing them with additional visual cues alongside direct image features in VQA tasks. Surprisingly, this augmentation significantly improves the VLMs' performance in many cases, even though VLMs "see" the image directly! We explore chain-of-thought (CoT) reasoning and find that while standard CoT reasoning causes drops in performance, advanced methods like self-consistency can help recover it. Furthermore, we find that text-only few-shot examples enhance VLMs' alignment with the task format, particularly benefiting models prone to verbose zero-shot answers. Lastly, to mitigate the challenges associated with evaluating free-form open-ended VQA responses using string-matching based VQA metrics, we introduce a straightforward LLM-guided pre-processing technique to adapt the model responses to the expected ground-truth answer distribution. In summary, our research sheds light on the intricacies of prompting strategies in VLMs for VQA, emphasizing the synergistic use of captions, templates, and pre-processing to enhance model efficacy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rabiul Awal (9 papers)
  2. Le Zhang (180 papers)
  3. Aishwarya Agrawal (28 papers)
Citations (9)