A classification of supersymmetric Kaluza-Klein black holes with a single axial symmetry (2306.09933v2)
Abstract: We extend the recent classification of five-dimensional, supersymmetric asymptotically flat black holes with only a single axial symmetry to black holes with Kaluza-Klein asymptotics. This includes a similar class of solutions for which the supersymmetric Killing field is generically timelike, and the corresponding base (orbit space of the supersymmetric Killing field) is of multi-centred Gibbons-Hawking type. These solutions are determined by four harmonic functions on $\mathbb{R}3$ with simple poles at the centres corresponding to connected components of the horizon, and fixed points of the axial symmetry. The allowed horizon topologies are $S3$, $S2\times S1$, and lens space $L(p, 1)$, and the domain of outer communication may have non-trivial topology with non-contractible 2-cycles. The classification also reveals a novel class of supersymmetric (multi-)black rings for which the supersymmetric Killing field is globally null. These solutions are determined by two harmonic functions on $\mathbb{R}3$ with simple poles at centres corresponding to horizon components. We determine the subclass of Kaluza-Klein black holes that can be dimensionally reduced to obtain smooth, supersymmetric, four-dimensional multi-black holes. This gives a classification of four-dimensional asymptotically flat supersymmetric multi-black holes first described by Denef et al.
- M. Heusler, Black Hole Uniqueness Theorems. Cambridge: Cambridge University Press, 1996. OCLC: 689001705.
- P. T. Chruściel, J. L. Costa, and M. Heusler, “Stationary Black Holes: Uniqueness and Beyond,” Living Reviews in Relativity, vol. 15, p. 7, Dec. 2012. arXiv: 1205.6112.
- S. Hollands and A. Ishibashi, “Black hole uniqueness theorems in higher dimensional spacetimes,” Classical and Quantum Gravity, vol. 29, p. 163001, July 2012. Publisher: IOP Publishing.
- R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Physical Review Letters, vol. 88, p. 101101, Feb. 2002. arXiv: hep-th/0110260.
- R. C. Myers and M. J. Perry, “Black holes in higher dimensional space-times,” Annals of Physics, vol. 172, pp. 304–347, Dec. 1986.
- G. J. Galloway and R. Schoen, “A generalization of Hawking’s black hole topology theorem to higher dimensions,” Communications in Mathematical Physics, vol. 266, pp. 571–576, Sept. 2006. arXiv:gr-qc/0509107.
- S. Hollands, J. Holland, and A. Ishibashi, “Further restrictions on the topology of stationary black holes in five dimensions,” Annales Henri Poincaré, vol. 12, pp. 279–301, Mar. 2011. arXiv: 1002.0490.
- S. Hollands, A. Ishibashi, and R. M. Wald, “A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric,” Communications in Mathematical Physics, vol. 271, pp. 699–722, Mar. 2007. arXiv: gr-qc/0605106.
- V. Moncrief and J. Isenberg, “Symmetries of Higher Dimensional Black Holes,” Classical and Quantum Gravity, vol. 25, p. 195015, Oct. 2008. arXiv:0805.1451 [gr-qc].
- S. Hollands and A. Ishibashi, “On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions,” Communications in Mathematical Physics, vol. 291, pp. 443–471, Oct. 2009. arXiv:0809.2659 [gr-qc].
- J. L. Friedman, K. Schleich, and D. M. Witt, “Topological Censorship,” Physical Review Letters, vol. 75, pp. 1872–1872, Aug. 1995. arXiv: gr-qc/9305017.
- P. T. Chruściel, G. J. Galloway, and D. Solis, “Topological censorship for Kaluza-Klein space-times,” Annales Henri Poincaré, vol. 10, pp. 893–912, Aug. 2009. arXiv:0808.3233 [gr-qc].
- S. Hollands and S. Yazadjiev, “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields,” Communications in Mathematical Physics, vol. 283, pp. 749–768, Nov. 2008. arXiv:0707.2775 [gr-qc].
- S. Hollands and S. Yazadjiev, “A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes,” Classical and Quantum Gravity, vol. 25, p. 095010, May 2008. arXiv:0711.1722 [gr-qc].
- S. Hollands and S. Yazadjiev, “A uniqueness theorem for stationary Kaluza-Klein black holes,” Communications in Mathematical Physics, vol. 302, pp. 631–674, Mar. 2011. arXiv:0812.3036 [gr-qc].
- H. S. Reall, “Higher dimensional black holes and supersymmetry,” Physical Review D, vol. 70, p. 089902, Oct. 2004. arXiv: hep-th/0211290.
- R. Emparan, T. Harmark, V. Niarchos, and N. A. Obers, “New Horizons for Black Holes and Branes,” Journal of High Energy Physics, vol. 2010, p. 46, Apr. 2010. arXiv:0912.2352 [gr-qc, physics:hep-th].
- O. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, “An instability of higher-dimensional rotating black holes,” Journal of High Energy Physics, vol. 2010, p. 76, May 2010. arXiv:1001.4527 [gr-qc, physics:hep-th].
- D. Katona and J. Lucietti, “Supersymmetric Black Holes with a Single Axial Symmetry in Five Dimensions,” Communications in Mathematical Physics, Dec. 2022.
- J. C. Breckenridge, R. C. Myers, A. W. Peet, and C. Vafa, “D–branes and Spinning Black Holes,” Physics Letters B, vol. 391, pp. 93–98, Jan. 1997. arXiv: hep-th/9602065.
- H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, “A supersymmetric black ring,” Physical Review Letters, vol. 93, p. 211302, Nov. 2004. arXiv:hep-th/0407065.
- J. P. Gauntlett and J. B. Gutowski, “Concentric Black Rings,” Physical Review D, vol. 71, p. 025013, Jan. 2005. arXiv:hep-th/0408010.
- G. T. Horowitz, H. K. Kunduri, and J. Lucietti, “Comments on Black Holes in Bubbling Spacetimes,” arXiv:1704.04071 [gr-qc, physics:hep-th], Apr. 2017. arXiv: 1704.04071.
- V. Breunhölder and J. Lucietti, “Supersymmetric black hole non-uniqueness in five dimensions,” Journal of High Energy Physics, vol. 2019, p. 105, Mar. 2019. arXiv: 1812.07329.
- A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,” Physics Letters B, vol. 379, pp. 99–104, June 1996. arXiv: hep-th/9601029.
- H. K. Kunduri and J. Lucietti, “A supersymmetric black lens,” Physical Review Letters, vol. 113, p. 211101, Nov. 2014. arXiv:1408.6083 [gr-qc, physics:hep-th].
- S. Tomizawa and M. Nozawa, “Supersymmetric black lenses in five dimensions,” Phys.Rev.D, vol. 94, no. 4, 2016. Number: arXiv:1606.06643.
- S. Tomizawa and T. Okuda, “Asymptotically flat multi-black lenses,” Physical Review D, vol. 95, p. 064021, Mar. 2017. arXiv:1701.06402 [hep-th].
- V. Breunholder and J. Lucietti, “Moduli space of supersymmetric solitons and black holes in five dimensions,” Communications in Mathematical Physics, vol. 365, pp. 471–513, Jan. 2019. arXiv: 1712.07092.
- S. Tomizawa, “A Kaluza-Klein black lens in five dimensions,” Physical Review D, vol. 98, p. 024012, July 2018. arXiv:1803.11470 [gr-qc, physics:hep-th].
- I. Bena and N. P. Warner, “Bubbling Supertubes and Foaming Black Holes,” Physical Review D, vol. 74, p. 066001, Sept. 2006. arXiv:hep-th/0505166.
- I. Bena and N. P. Warner, “Black Holes, Black Rings and their Microstates,” arXiv:hep-th/0701216, vol. 755, 2008. arXiv: hep-th/0701216.
- H. K. Kunduri and J. Lucietti, “Black hole non-uniqueness via spacetime topology in five dimensions,” Journal of High Energy Physics, vol. 2014, p. 82, Oct. 2014. arXiv: 1407.8002.
- J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis, and H. S. Reall, “All supersymmetric solutions of minimal supergravity in five dimensions,” Classical and Quantum Gravity, vol. 20, pp. 4587–4634, Nov. 2003. arXiv: hep-th/0209114.
- I. Bena and N. P. Warner, “One Ring to Rule Them All … and in the Darkness Bind Them?,” arXiv:hep-th/0408106, Nov. 2004. arXiv: hep-th/0408106.
- S. W. Hawking, “Gravitational instantons,” Physics Letters A, vol. 60, pp. 81–83, Feb. 1977.
- G. W. Gibbons and S. W. Hawking, “Gravitational multi-instantons,” Physics Letters B, vol. 78, pp. 430–432, Oct. 1978.
- G. W. Gibbons and P. J. Ruback, “The hidden symmetries of multi-centre metrics,” Communications in Mathematical Physics, vol. 115, pp. 267–300, June 1988.
- H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, “Supersymmetric 4D Rotating Black Holes from 5D Black Rings,” Journal of High Energy Physics, vol. 2005, pp. 042–042, Aug. 2005. arXiv:hep-th/0504125.
- D. Gaiotto, A. Strominger, and X. Yin, “5D Black Rings and 4D Black Holes,” Journal of High Energy Physics, vol. 2006, pp. 023–023, Feb. 2006. arXiv:hep-th/0504126.
- I. Bena, P. Kraus, and N. P. Warner, “Black Rings in Taub-NUT,” Physical Review D, vol. 72, p. 084019, Oct. 2005. arXiv:hep-th/0504142.
- H. Ishihara and K. Matsuno, “Kaluza-Klein Black Holes with Squashed Horizons,” Progress of Theoretical Physics, vol. 116, pp. 417–422, Aug. 2006. arXiv:hep-th/0510094.
- H. Ishihara, M. Kimura, K. Matsuno, and S. Tomizawa, “Kaluza-Klein Multi-Black Holes in Five-Dimensional Einstein-Maxwell Theory,” Classical and Quantum Gravity, vol. 23, pp. 6919–6925, Dec. 2006. arXiv:hep-th/0605030.
- T. Nakagawa, H. Ishihara, K. Matsuno, and S. Tomizawa, “Charged Rotating Kaluza-Klein Black Holes in Five Dimensions,” Physical Review D, vol. 77, p. 044040, Feb. 2008. arXiv:0801.0164 [hep-th].
- K. Matsuno, H. Ishihara, T. Nakagawa, and S. Tomizawa, “Rotating Kaluza-Klein Multi-Black Holes with Godel Parameter,” Physical Review D, vol. 78, p. 064016, Sept. 2008. arXiv:0806.3316 [gr-qc, physics:hep-th].
- S. Tomizawa and A. Ishibashi, “Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background,” Classical and Quantum Gravity, vol. 25, p. 245007, Dec. 2008. arXiv:0807.1564 [hep-th].
- S. Tomizawa, H. Ishihara, K. Matsuno, and T. Nakagawa, “Squashed Kerr-Godel Black Holes - Kaluza-Klein Black Holes with Rotations of Black Hole and Universe -,” Progress of Theoretical Physics, vol. 121, pp. 823–841, Apr. 2009. arXiv:0803.3873 [hep-th].
- S. Tomizawa, “Compactified black holes in five-dimensional U(1)**3 ungauged supergravity,” Sept. 2010. arXiv:1009.3568 [hep-th].
- S. Tomizawa and H. Ishihara, “Exact solutions of higher dimensional black holes,” Progress of Theoretical Physics Supplement, vol. 189, pp. 7–51, 2011. arXiv:1104.1468 [gr-qc, physics:hep-th].
- S. Tomizawa and S. Mizoguchi, “General Kaluza-Klein black holes with all six independent charges in five-dimensional minimal supergravity,” Physical Review D, vol. 87, p. 024027, Jan. 2013. arXiv:1210.6723 [gr-qc, physics:hep-th].
- S. Tomizawa, “Uniqueness theorems for Kaluza-Klein black holes in five-dimensional minimal supergravity,” Physical Review D, vol. 82, p. 104047, Nov. 2010. arXiv:1007.1183 [gr-qc, physics:hep-th].
- D. Gaiotto, A. Strominger, and X. Yin, “New Connections Between 4D and 5D Black Holes,” Journal of High Energy Physics, vol. 2006, pp. 024–024, Feb. 2006. arXiv:hep-th/0503217.
- K. Behrndt, G. L. Cardoso, and S. Mahapatra, “Exploring the relation between 4D and 5D BPS solutions,” Nuclear Physics B, vol. 732, pp. 200–223, Jan. 2006. arXiv:hep-th/0506251.
- F. Denef, “Supergravity flows and D-brane stability,” Journal of High Energy Physics, vol. 2000, pp. 050–050, Aug. 2000. arXiv:hep-th/0005049.
- F. Denef, B. Greene, and M. Raugas, “Split attractor flows and the spectrum of BPS D-branes on the Quintic,” Journal of High Energy Physics, vol. 2001, pp. 012–012, May 2001. arXiv:hep-th/0101135.
- B. Bates and F. Denef, “Exact solutions for supersymmetric stationary black hole composites,” Journal of High Energy Physics, vol. 2011, p. 127, Nov. 2011. arXiv:hep-th/0304094.
- G. W. Gibbons, G. T. Horowitz, and P. K. Townsend, “Higher-dimensional resolution of dilatonic black hole singularities,” Classical and Quantum Gravity, vol. 12, pp. 297–317, Feb. 1995. arXiv:hep-th/9410073.
- J. B. Gutowski, D. Martelli, and H. S. Reall, “All supersymmetric solutions of minimal supergravity in six dimensions,” Classical and Quantum Gravity, vol. 20, pp. 5049–5078, Dec. 2003. arXiv:hep-th/0306235.
- P. T. Chrusciel and D. Maerten, “Killing vectors in asymptotically flat space–times: II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions,” arXiv:gr-qc/0512042, Dec. 2005. arXiv: gr-qc/0512042.
- R. Beig and P. T. Chrusciel, “Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem,” Journal of Mathematical Physics, vol. 37, pp. 1939–1961, Apr. 1996. arXiv: gr-qc/9510015.
- P. T. Chruściel, “On the invariant mass conjecture in general relativity,” Communications in Mathematical Physics, vol. 120, pp. 233–248, June 1988.
- R. Fintushel, “Circle actions on simply connected 4-manifolds,” Transactions of the American Mathematical Society, vol. 230, pp. 147–171, 1977.
- R. Fintushel, “Classification of circle actions on 4-manifolds,” Transactions of the American Mathematical Society, vol. 242, pp. 377–390, 1978.
- G. W. Gibbons and S. W. Hawking, “Classification of Gravitational Instanton symmetries,” Communications in Mathematical Physics, vol. 66, pp. 291–310, 1979.
- Cham: Springer International Publishing, 2018.
- New York, NY: Springer New York, 2001.
- R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
- M. Dunajski and S. A. Hartnoll, “Einstein-Maxwell gravitational instantons and five dimensional solitonic strings,” Class. Quant. Grav., vol. 24, pp. 1841–1862, 2007. _eprint: hep-th/0610261.
- J. Avila, P. F. Ramirez, and A. Ruiperez, “One Thousand and One Bubbles,” Journal of High Energy Physics, vol. 2018, p. 41, Jan. 2018. arXiv: 1709.03985.
- M. Bertolini, P. Fre‘, and M. Trigiante, “N=8 BPS black holes preserving 1/8 supersymmetry,” Classical and Quantum Gravity, vol. 16, pp. 1519–1543, May 1999. arXiv:hep-th/9811251.
- J. Figueroa-O’Farrill and J. Simón, “Supersymmetric Kaluza-Klein reductions of AdS backgrounds,” Jan. 2004. arXiv:hep-th/0401206.
- J. Figueroa-O’Farrill and G. Franchetti, “Kaluza-Klein reductions of maximally supersymmetric five-dimensional lorentzian spacetimes,” Classical and Quantum Gravity, vol. 39, p. 215009, Nov. 2022. arXiv:2207.07430 [gr-qc, physics:hep-th].
- K. P. Tod, “More on supercovariantly constant spinors,” Classical and Quantum Gravity, vol. 12, pp. 1801–1820, July 1995.
- P. T. Chrusciel, H. S. Reall, and P. Tod, “On Israel-Wilson-Perjes black holes,” Classical and Quantum Gravity, vol. 23, pp. 2519–2540, Apr. 2006. arXiv: gr-qc/0512116.
- L. Fatibene, M. Ferraris, M. Francaviglia, and M. Godina, “A geometric definition of Lie derivative for Spinor Fields,” arXiv:gr-qc/9608003, Aug. 1996. arXiv: gr-qc/9608003.