Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A classification of supersymmetric Kaluza-Klein black holes with a single axial symmetry (2306.09933v2)

Published 16 Jun 2023 in hep-th and gr-qc

Abstract: We extend the recent classification of five-dimensional, supersymmetric asymptotically flat black holes with only a single axial symmetry to black holes with Kaluza-Klein asymptotics. This includes a similar class of solutions for which the supersymmetric Killing field is generically timelike, and the corresponding base (orbit space of the supersymmetric Killing field) is of multi-centred Gibbons-Hawking type. These solutions are determined by four harmonic functions on $\mathbb{R}3$ with simple poles at the centres corresponding to connected components of the horizon, and fixed points of the axial symmetry. The allowed horizon topologies are $S3$, $S2\times S1$, and lens space $L(p, 1)$, and the domain of outer communication may have non-trivial topology with non-contractible 2-cycles. The classification also reveals a novel class of supersymmetric (multi-)black rings for which the supersymmetric Killing field is globally null. These solutions are determined by two harmonic functions on $\mathbb{R}3$ with simple poles at centres corresponding to horizon components. We determine the subclass of Kaluza-Klein black holes that can be dimensionally reduced to obtain smooth, supersymmetric, four-dimensional multi-black holes. This gives a classification of four-dimensional asymptotically flat supersymmetric multi-black holes first described by Denef et al.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. M. Heusler, Black Hole Uniqueness Theorems. Cambridge: Cambridge University Press, 1996. OCLC: 689001705.
  2. P. T. Chruściel, J. L. Costa, and M. Heusler, “Stationary Black Holes: Uniqueness and Beyond,” Living Reviews in Relativity, vol. 15, p. 7, Dec. 2012. arXiv: 1205.6112.
  3. S. Hollands and A. Ishibashi, “Black hole uniqueness theorems in higher dimensional spacetimes,” Classical and Quantum Gravity, vol. 29, p. 163001, July 2012. Publisher: IOP Publishing.
  4. R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Physical Review Letters, vol. 88, p. 101101, Feb. 2002. arXiv: hep-th/0110260.
  5. R. C. Myers and M. J. Perry, “Black holes in higher dimensional space-times,” Annals of Physics, vol. 172, pp. 304–347, Dec. 1986.
  6. G. J. Galloway and R. Schoen, “A generalization of Hawking’s black hole topology theorem to higher dimensions,” Communications in Mathematical Physics, vol. 266, pp. 571–576, Sept. 2006. arXiv:gr-qc/0509107.
  7. S. Hollands, J. Holland, and A. Ishibashi, “Further restrictions on the topology of stationary black holes in five dimensions,” Annales Henri Poincaré, vol. 12, pp. 279–301, Mar. 2011. arXiv: 1002.0490.
  8. S. Hollands, A. Ishibashi, and R. M. Wald, “A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric,” Communications in Mathematical Physics, vol. 271, pp. 699–722, Mar. 2007. arXiv: gr-qc/0605106.
  9. V. Moncrief and J. Isenberg, “Symmetries of Higher Dimensional Black Holes,” Classical and Quantum Gravity, vol. 25, p. 195015, Oct. 2008. arXiv:0805.1451 [gr-qc].
  10. S. Hollands and A. Ishibashi, “On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions,” Communications in Mathematical Physics, vol. 291, pp. 443–471, Oct. 2009. arXiv:0809.2659 [gr-qc].
  11. J. L. Friedman, K. Schleich, and D. M. Witt, “Topological Censorship,” Physical Review Letters, vol. 75, pp. 1872–1872, Aug. 1995. arXiv: gr-qc/9305017.
  12. P. T. Chruściel, G. J. Galloway, and D. Solis, “Topological censorship for Kaluza-Klein space-times,” Annales Henri Poincaré, vol. 10, pp. 893–912, Aug. 2009. arXiv:0808.3233 [gr-qc].
  13. S. Hollands and S. Yazadjiev, “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields,” Communications in Mathematical Physics, vol. 283, pp. 749–768, Nov. 2008. arXiv:0707.2775 [gr-qc].
  14. S. Hollands and S. Yazadjiev, “A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes,” Classical and Quantum Gravity, vol. 25, p. 095010, May 2008. arXiv:0711.1722 [gr-qc].
  15. S. Hollands and S. Yazadjiev, “A uniqueness theorem for stationary Kaluza-Klein black holes,” Communications in Mathematical Physics, vol. 302, pp. 631–674, Mar. 2011. arXiv:0812.3036 [gr-qc].
  16. H. S. Reall, “Higher dimensional black holes and supersymmetry,” Physical Review D, vol. 70, p. 089902, Oct. 2004. arXiv: hep-th/0211290.
  17. R. Emparan, T. Harmark, V. Niarchos, and N. A. Obers, “New Horizons for Black Holes and Branes,” Journal of High Energy Physics, vol. 2010, p. 46, Apr. 2010. arXiv:0912.2352 [gr-qc, physics:hep-th].
  18. O. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, “An instability of higher-dimensional rotating black holes,” Journal of High Energy Physics, vol. 2010, p. 76, May 2010. arXiv:1001.4527 [gr-qc, physics:hep-th].
  19. D. Katona and J. Lucietti, “Supersymmetric Black Holes with a Single Axial Symmetry in Five Dimensions,” Communications in Mathematical Physics, Dec. 2022.
  20. J. C. Breckenridge, R. C. Myers, A. W. Peet, and C. Vafa, “D–branes and Spinning Black Holes,” Physics Letters B, vol. 391, pp. 93–98, Jan. 1997. arXiv: hep-th/9602065.
  21. H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, “A supersymmetric black ring,” Physical Review Letters, vol. 93, p. 211302, Nov. 2004. arXiv:hep-th/0407065.
  22. J. P. Gauntlett and J. B. Gutowski, “Concentric Black Rings,” Physical Review D, vol. 71, p. 025013, Jan. 2005. arXiv:hep-th/0408010.
  23. G. T. Horowitz, H. K. Kunduri, and J. Lucietti, “Comments on Black Holes in Bubbling Spacetimes,” arXiv:1704.04071 [gr-qc, physics:hep-th], Apr. 2017. arXiv: 1704.04071.
  24. V. Breunhölder and J. Lucietti, “Supersymmetric black hole non-uniqueness in five dimensions,” Journal of High Energy Physics, vol. 2019, p. 105, Mar. 2019. arXiv: 1812.07329.
  25. A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,” Physics Letters B, vol. 379, pp. 99–104, June 1996. arXiv: hep-th/9601029.
  26. H. K. Kunduri and J. Lucietti, “A supersymmetric black lens,” Physical Review Letters, vol. 113, p. 211101, Nov. 2014. arXiv:1408.6083 [gr-qc, physics:hep-th].
  27. S. Tomizawa and M. Nozawa, “Supersymmetric black lenses in five dimensions,” Phys.Rev.D, vol. 94, no. 4, 2016. Number: arXiv:1606.06643.
  28. S. Tomizawa and T. Okuda, “Asymptotically flat multi-black lenses,” Physical Review D, vol. 95, p. 064021, Mar. 2017. arXiv:1701.06402 [hep-th].
  29. V. Breunholder and J. Lucietti, “Moduli space of supersymmetric solitons and black holes in five dimensions,” Communications in Mathematical Physics, vol. 365, pp. 471–513, Jan. 2019. arXiv: 1712.07092.
  30. S. Tomizawa, “A Kaluza-Klein black lens in five dimensions,” Physical Review D, vol. 98, p. 024012, July 2018. arXiv:1803.11470 [gr-qc, physics:hep-th].
  31. I. Bena and N. P. Warner, “Bubbling Supertubes and Foaming Black Holes,” Physical Review D, vol. 74, p. 066001, Sept. 2006. arXiv:hep-th/0505166.
  32. I. Bena and N. P. Warner, “Black Holes, Black Rings and their Microstates,” arXiv:hep-th/0701216, vol. 755, 2008. arXiv: hep-th/0701216.
  33. H. K. Kunduri and J. Lucietti, “Black hole non-uniqueness via spacetime topology in five dimensions,” Journal of High Energy Physics, vol. 2014, p. 82, Oct. 2014. arXiv: 1407.8002.
  34. J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis, and H. S. Reall, “All supersymmetric solutions of minimal supergravity in five dimensions,” Classical and Quantum Gravity, vol. 20, pp. 4587–4634, Nov. 2003. arXiv: hep-th/0209114.
  35. I. Bena and N. P. Warner, “One Ring to Rule Them All … and in the Darkness Bind Them?,” arXiv:hep-th/0408106, Nov. 2004. arXiv: hep-th/0408106.
  36. S. W. Hawking, “Gravitational instantons,” Physics Letters A, vol. 60, pp. 81–83, Feb. 1977.
  37. G. W. Gibbons and S. W. Hawking, “Gravitational multi-instantons,” Physics Letters B, vol. 78, pp. 430–432, Oct. 1978.
  38. G. W. Gibbons and P. J. Ruback, “The hidden symmetries of multi-centre metrics,” Communications in Mathematical Physics, vol. 115, pp. 267–300, June 1988.
  39. H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, “Supersymmetric 4D Rotating Black Holes from 5D Black Rings,” Journal of High Energy Physics, vol. 2005, pp. 042–042, Aug. 2005. arXiv:hep-th/0504125.
  40. D. Gaiotto, A. Strominger, and X. Yin, “5D Black Rings and 4D Black Holes,” Journal of High Energy Physics, vol. 2006, pp. 023–023, Feb. 2006. arXiv:hep-th/0504126.
  41. I. Bena, P. Kraus, and N. P. Warner, “Black Rings in Taub-NUT,” Physical Review D, vol. 72, p. 084019, Oct. 2005. arXiv:hep-th/0504142.
  42. H. Ishihara and K. Matsuno, “Kaluza-Klein Black Holes with Squashed Horizons,” Progress of Theoretical Physics, vol. 116, pp. 417–422, Aug. 2006. arXiv:hep-th/0510094.
  43. H. Ishihara, M. Kimura, K. Matsuno, and S. Tomizawa, “Kaluza-Klein Multi-Black Holes in Five-Dimensional Einstein-Maxwell Theory,” Classical and Quantum Gravity, vol. 23, pp. 6919–6925, Dec. 2006. arXiv:hep-th/0605030.
  44. T. Nakagawa, H. Ishihara, K. Matsuno, and S. Tomizawa, “Charged Rotating Kaluza-Klein Black Holes in Five Dimensions,” Physical Review D, vol. 77, p. 044040, Feb. 2008. arXiv:0801.0164 [hep-th].
  45. K. Matsuno, H. Ishihara, T. Nakagawa, and S. Tomizawa, “Rotating Kaluza-Klein Multi-Black Holes with Godel Parameter,” Physical Review D, vol. 78, p. 064016, Sept. 2008. arXiv:0806.3316 [gr-qc, physics:hep-th].
  46. S. Tomizawa and A. Ishibashi, “Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background,” Classical and Quantum Gravity, vol. 25, p. 245007, Dec. 2008. arXiv:0807.1564 [hep-th].
  47. S. Tomizawa, H. Ishihara, K. Matsuno, and T. Nakagawa, “Squashed Kerr-Godel Black Holes - Kaluza-Klein Black Holes with Rotations of Black Hole and Universe -,” Progress of Theoretical Physics, vol. 121, pp. 823–841, Apr. 2009. arXiv:0803.3873 [hep-th].
  48. S. Tomizawa, “Compactified black holes in five-dimensional U(1)**3 ungauged supergravity,” Sept. 2010. arXiv:1009.3568 [hep-th].
  49. S. Tomizawa and H. Ishihara, “Exact solutions of higher dimensional black holes,” Progress of Theoretical Physics Supplement, vol. 189, pp. 7–51, 2011. arXiv:1104.1468 [gr-qc, physics:hep-th].
  50. S. Tomizawa and S. Mizoguchi, “General Kaluza-Klein black holes with all six independent charges in five-dimensional minimal supergravity,” Physical Review D, vol. 87, p. 024027, Jan. 2013. arXiv:1210.6723 [gr-qc, physics:hep-th].
  51. S. Tomizawa, “Uniqueness theorems for Kaluza-Klein black holes in five-dimensional minimal supergravity,” Physical Review D, vol. 82, p. 104047, Nov. 2010. arXiv:1007.1183 [gr-qc, physics:hep-th].
  52. D. Gaiotto, A. Strominger, and X. Yin, “New Connections Between 4D and 5D Black Holes,” Journal of High Energy Physics, vol. 2006, pp. 024–024, Feb. 2006. arXiv:hep-th/0503217.
  53. K. Behrndt, G. L. Cardoso, and S. Mahapatra, “Exploring the relation between 4D and 5D BPS solutions,” Nuclear Physics B, vol. 732, pp. 200–223, Jan. 2006. arXiv:hep-th/0506251.
  54. F. Denef, “Supergravity flows and D-brane stability,” Journal of High Energy Physics, vol. 2000, pp. 050–050, Aug. 2000. arXiv:hep-th/0005049.
  55. F. Denef, B. Greene, and M. Raugas, “Split attractor flows and the spectrum of BPS D-branes on the Quintic,” Journal of High Energy Physics, vol. 2001, pp. 012–012, May 2001. arXiv:hep-th/0101135.
  56. B. Bates and F. Denef, “Exact solutions for supersymmetric stationary black hole composites,” Journal of High Energy Physics, vol. 2011, p. 127, Nov. 2011. arXiv:hep-th/0304094.
  57. G. W. Gibbons, G. T. Horowitz, and P. K. Townsend, “Higher-dimensional resolution of dilatonic black hole singularities,” Classical and Quantum Gravity, vol. 12, pp. 297–317, Feb. 1995. arXiv:hep-th/9410073.
  58. J. B. Gutowski, D. Martelli, and H. S. Reall, “All supersymmetric solutions of minimal supergravity in six dimensions,” Classical and Quantum Gravity, vol. 20, pp. 5049–5078, Dec. 2003. arXiv:hep-th/0306235.
  59. P. T. Chrusciel and D. Maerten, “Killing vectors in asymptotically flat space–times: II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions,” arXiv:gr-qc/0512042, Dec. 2005. arXiv: gr-qc/0512042.
  60. R. Beig and P. T. Chrusciel, “Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem,” Journal of Mathematical Physics, vol. 37, pp. 1939–1961, Apr. 1996. arXiv: gr-qc/9510015.
  61. P. T. Chruściel, “On the invariant mass conjecture in general relativity,” Communications in Mathematical Physics, vol. 120, pp. 233–248, June 1988.
  62. R. Fintushel, “Circle actions on simply connected 4-manifolds,” Transactions of the American Mathematical Society, vol. 230, pp. 147–171, 1977.
  63. R. Fintushel, “Classification of circle actions on 4-manifolds,” Transactions of the American Mathematical Society, vol. 242, pp. 377–390, 1978.
  64. G. W. Gibbons and S. W. Hawking, “Classification of Gravitational Instanton symmetries,” Communications in Mathematical Physics, vol. 66, pp. 291–310, 1979.
  65. Cham: Springer International Publishing, 2018.
  66. New York, NY: Springer New York, 2001.
  67. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
  68. M. Dunajski and S. A. Hartnoll, “Einstein-Maxwell gravitational instantons and five dimensional solitonic strings,” Class. Quant. Grav., vol. 24, pp. 1841–1862, 2007. _eprint: hep-th/0610261.
  69. J. Avila, P. F. Ramirez, and A. Ruiperez, “One Thousand and One Bubbles,” Journal of High Energy Physics, vol. 2018, p. 41, Jan. 2018. arXiv: 1709.03985.
  70. M. Bertolini, P. Fre‘, and M. Trigiante, “N=8 BPS black holes preserving 1/8 supersymmetry,” Classical and Quantum Gravity, vol. 16, pp. 1519–1543, May 1999. arXiv:hep-th/9811251.
  71. J. Figueroa-O’Farrill and J. Simón, “Supersymmetric Kaluza-Klein reductions of AdS backgrounds,” Jan. 2004. arXiv:hep-th/0401206.
  72. J. Figueroa-O’Farrill and G. Franchetti, “Kaluza-Klein reductions of maximally supersymmetric five-dimensional lorentzian spacetimes,” Classical and Quantum Gravity, vol. 39, p. 215009, Nov. 2022. arXiv:2207.07430 [gr-qc, physics:hep-th].
  73. K. P. Tod, “More on supercovariantly constant spinors,” Classical and Quantum Gravity, vol. 12, pp. 1801–1820, July 1995.
  74. P. T. Chrusciel, H. S. Reall, and P. Tod, “On Israel-Wilson-Perjes black holes,” Classical and Quantum Gravity, vol. 23, pp. 2519–2540, Apr. 2006. arXiv: gr-qc/0512116.
  75. L. Fatibene, M. Ferraris, M. Francaviglia, and M. Godina, “A geometric definition of Lie derivative for Spinor Fields,” arXiv:gr-qc/9608003, Aug. 1996. arXiv: gr-qc/9608003.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com