Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial depth for data in metric spaces (2306.09740v1)

Published 16 Jun 2023 in math.ST and stat.TH

Abstract: We propose a novel measure of statistical depth, the metric spatial depth, for data residing in an arbitrary metric space. The measure assigns high (low) values for points located near (far away from) the bulk of the data distribution, allowing quantifying their centrality/outlyingness. This depth measure is shown to have highly interpretable geometric properties, making it appealing in object data analysis where standard descriptive statistics are difficult to compute. The proposed measure reduces to the classical spatial depth in a Euclidean space. In addition to studying its theoretical properties, to provide intuition on the concept, we explicitly compute metric spatial depths in several different metric spaces. Finally, we showcase the practical usefulness of the metric spatial depth in outlier detection, non-convex depth region estimation and classification.

Summary

We haven't generated a summary for this paper yet.