Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric-Based Pruning Rules For Change Point Detection in Multiple Independent Time Series (2306.09555v2)

Published 15 Jun 2023 in stat.ME, stat.CO, and stat.ML

Abstract: We consider the problem of detecting multiple changes in multiple independent time series. The search for the best segmentation can be expressed as a minimization problem over a given cost function. We focus on dynamic programming algorithms that solve this problem exactly. When the number of changes is proportional to data length, an inequality-based pruning rule encoded in the PELT algorithm leads to a linear time complexity. Another type of pruning, called functional pruning, gives a close-to-linear time complexity whatever the number of changes, but only for the analysis of univariate time series. We propose a few extensions of functional pruning for multiple independent time series based on the use of simple geometric shapes (balls and hyperrectangles). We focus on the Gaussian case, but some of our rules can be easily extended to the exponential family. In a simulation study we compare the computational efficiency of different geometric-based pruning rules. We show that for small dimensions (2, 3, 4) some of them ran significantly faster than inequality-based approaches in particular when the underlying number of changes is small compared to the data length.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. doi:10.17226/18374.
  2. doi:10.1093/biostatistics/kxh008.
  3. doi:10.1186/1471-2105-6-27. URL https://hal.archives-ouvertes.fr/hal-01222433
  4. doi:10.1175/JAM2493.1. URL https://journals.ametsoc.org/view/journals/apme/46/6/jam2493.1.xml
  5. arXiv:https://doi.org/10.1080/01621459.2012.737745.
  6. doi:10.1214/14-aos1245. URL https://doi.org/10.1214%2F14-aos1245
  7. doi:10.1007/s10514-017-9619-z.
  8. doi:10.1109/ICASSP.2009.4960554.
  9. doi:10.1109/TIP.2004.838698.
  10. doi:10.1007/s10514-012-9273-4. URL https://doi.org/10.1007/s10514-012-9273-4
  11. doi:10.48550/ARXIV.1910.04291. URL https://arxiv.org/abs/1910.04291
  12. doi:10.1214/aos/1176346802. URL https://doi.org/10.1214/aos/1176346802
  13. doi:10.1016/j.sigpro.2004.11.012.
  14. doi:10.48550/ARXIV.1301.7212. URL https://arxiv.org/abs/1301.7212
  15. doi:10.1007/s00184-021-00821-6.
  16. doi:10.1007/BF02458835. URL https://doi.org/10.1007/BF02458835
  17. doi:10.1111/j.1541-0420.2006.00662.x.
  18. doi:10.48550/ARXIV.2010.11470. URL https://arxiv.org/abs/2010.11470
  19. doi:10.1093/nargab/lqad098. URL https://hal.inrae.fr/hal-04282211
Citations (1)

Summary

We haven't generated a summary for this paper yet.