Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifying irreducible fixed points of five scalar fields in perturbation theory (2306.09419v2)

Published 15 Jun 2023 in hep-th

Abstract: Classifying perturbative fixed points near upper critical dimensions plays an important role in understanding the space of conformal field theories and critical phases of matter. In this work, we consider perturbative fixed points of $N=5$ scalar bosons coupled with quartic interactions preserving an arbitrary subgroup $G\subset {\rm O}(5)$. We perform an exhaustive algorithmic search over the symmetry groups $G$ which are irreducible and satisfy the Landau condition, so that the fixed point can be reached by fine-tuning a single mass term and there is no need to tune the cubic couplings. We also impose stability of the RG flow in the space of quartic couplings, and reality. We thus prove that there exist no new stable fixed points in $d=4-\epsilon$ dimensions beyond the two known ones: namely the ${\rm O}(5)$ invariant fixed point and the Cubic(5) fixed point. This work is a continuation of the classification of such fixed points with $N=4$ scalars by Toledano, Michel, Toledano, and Br\'ezin in 1985.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J.-C. Toledano, L. Michel, P. Toledano, and E. Brezin, “Renormalization-group study of the fixed points and of their stability for phase transitions with four-component order parameters,” Phys. Rev. B 31 (Jun, 1985) 7171–7196.
  2. K. G. Wilson and M. E. Fisher, “Critical Exponents in 3.99 Dimensions,” Phys. Rev. Lett. 28 (Jan, 1972) 240–243.
  3. M. Mecchia and B. Zimmermann, “On finite groups acting on homology 4-spheres and finite subgroups of S⁢O⁢(5)𝑆𝑂5SO(5)italic_S italic_O ( 5 ),” Topology and its Applications 158 no. 6, (2011) 741–747.
  4. https://www.gap-system.org.
  5. E. Brézin, J. Le Guillou, and J. Zinn-Justin, “Discussion of critical phenomena for general n-vector models,” Phys. Rev. B 10 no. 3, (1974) 892.
  6. L. Michel, “Renormalization-group fixed points of general n𝑛nitalic_n-vector models,” Phys. Rev. B 29 (1984) 2777–2783.
  7. S. Rychkov and A. Stergiou, “General Properties of Multiscalar RG Flows in d=4−ε𝑑4𝜀d=4-\varepsilonitalic_d = 4 - italic_ε,” SciPost Phys. 6 no. 1, (2019) 008.
  8. A. Pelissetto and E. Vicari, “Critical phenomena and renormalization-group theory,” Phys. Rept. 368 no. 6, (2002) 549–727.
  9. S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and A. Vichi, “Bootstrapping Heisenberg magnets and their cubic instability,” Phys. Rev. D 104 no. 10, (2021) 105013.
  10. M. Hasenbusch, “Cubic fixed point in three dimensions: Monte Carlo simulations of the ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model on the simple cubic lattice,” Phys. Rev. B 107 no. 2, (2023) 024409, arXiv:2211.16170 [cond-mat.stat-mech].
  11. D. M. Hatch, H. T. Stokes, J. S. Kim, and J. W. Felix, “Selection of stable fixed points by the Toledano-Michel symmetry criterion: Six-component example,” Phys. Rev. B 32 (1985) 7624–7627.
  12. J. S. Kim, D. M. Hatch, and H. T. Stokes, “Classification of continuous phase transitions and stable phases. I. Six-dimensional order parameters,” Phys. Rev. B 33 (1986) 1774–1788.
  13. D. M. Hatch, J. S. Kim, H. T. Stokes, and J. W. Felix, “Renormalization-group classification of continuous structural phase transitions induced by six-component order parameters,” Phys. Rev. B 33 (1986) 6196–6209.
  14. H. Osborn and A. Stergiou, “Seeking fixed points in multiple coupling scalar theories in the ϵitalic-ϵ\epsilonitalic_ϵ expansion,” JHEP 05 (2018) 051.
  15. A. Aharony, “Critical Behavior of Anisotropic Cubic Systems,” Phys. Rev. B 8 (Nov, 1973) 4270–4273.
  16. R. K. P. Zia and D. J. Wallace, “Critical behaviour of the continuous n-component Potts model,” Journal of Physics A: Mathematical and General 8 no. 9, (Sep, 1975) 1495.
  17. H. Kawamura, “Generalized Chiral Universality,” J. Phys. Soc. Japan 59 no. 7, (1990) 2305–2308.
  18. S. R. Kousvos and A. Stergiou, “CFTs with U⁢(m)×U⁢(n)𝑈𝑚𝑈𝑛U(m)\times U(n)italic_U ( italic_m ) × italic_U ( italic_n ) Global Symmetry in 3D and the Chiral Phase Transition of QCD,” arXiv:2209.02837 [hep-th].
  19. P. Calabrese and P. Parruccini, “Five loop epsilon expansion for U(n) x U(m) models: Finite temperature phase transition in light QCD,” JHEP 05 (2004) 018, arXiv:hep-ph/0403140.
  20. L. T. Adzhemyan, E. V. Ivanova, M. V. Kompaniets, A. Kudlis, and A. I. Sokolov, “Six-loop ε𝜀\varepsilonitalic_ε expansion of three-dimensional U⁢(n)×U⁢(m)𝑈𝑛𝑈𝑚U(n)\times U(m)italic_U ( italic_n ) × italic_U ( italic_m ) models,” Nucl. Phys. B 975 (2022) 115680, arXiv:2104.12195 [hep-th].
  21. D. Mukamel and S. Krinsky, “ϵitalic-ϵ\epsilonitalic_ϵ-expansion analysis of some physically realizable n≥4𝑛4n\geq 4italic_n ≥ 4 vector models,” Journal of Physics C: Solid State Physics 8 no. 22, (1975) L496.
  22. L. Michel, “The Symmetry and Renormalization Group Fixed Points of Quartic Hamiltonians,” in Symmetries in Particle Physics, Proceedings of a symposium celebrating Feza Gursey’s sixtieth birthday, B. Bars, A. Chodos, and C.-H. Tze, eds., pp. 63–92. Plenum Press, 1984.
  23. G. Grinstein and D. Mukamel, “Stable fixed points in models with many coupling constants,” Journal of Physics A 15 (1982) 233–237.
  24. Oxford mathematical monographs. Clarendon Press, 1964.
  25. Birkhauser Boston, 1884.
  26. P. O. Ludl, “On the finite subgroups of U⁢(3)𝑈3U(3)italic_U ( 3 ) of order smaller than 512,” Journal of Physics A: Mathematical and Theoretical 43 no. 39, (2010) 395204.
  27. F. Antoneli, M. Forger, and P. Gaviria, “Maximal subgroups of compact Lie groups,” Journal of Lie Theory 22 (2012) 949–1031.
  28. B. Feng, A. Hanany, and Y.-H. He, “Counting gauge invariants: the plethystic program,” JHEP 2007 no. 03, (Mar, 2007) 090.
  29. A. Hanany, N. Mekareeya, and G. Torri, “The Hilbert Series of Adjoint SQCD,” Nucl. Phys. B 825 (2010) 52–97.
  30. J. Henriksson, “The critical O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) CFT: Methods and conformal data,” Phys. Rept. 1002 (2023) 1–72.
  31. Wikipedia, “Bézout’s theorem.”. https://en.wikipedia.org/wiki/Bezouts_theorem.
  32. D. Wallace and R. Zia, “Gradient properties of the renormalisation group equations in multicomponent systems,” Annals of Physics 92 no. 1, (1975) 142–163.
  33. L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Yukawa conformal field theories and emergent supersymmetry,” Progress of Theoretical and Experimental Physics 2016 no. 12, (11, 2016) . 12C105.
  34. A. Bednyakov and A. Pikelner, “Six-loop beta functions in general scalar theory,” JHEP 2021 no. 4, (2021) 1–25.
  35. H. F. Blichfeldt, Finite collineation groups: with an introduction to the theory of groups of operators and substitution groups. University of Chicago Press, 1917.
  36. A. Hanany and Y.-H. He, “A monograph on the classification of the discrete subgroups of SU(4),” Journal of High Energy Physics 2001 no. 02, (Mar, 2001) 027.
  37. M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization,” Nucl. Phys. B 222 (1983) 83–103.
  38. M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B 236 (1984) 221–232.
  39. M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B 249 (1985) 70–92.
  40. J. Zinn-Justin, “Four fermion interaction near four-dimensions,” Nucl. Phys. B 367 (1991) 105–122.
  41. B. Rosenstein, H.-L. Yu, and A. Kovner, “Critical exponents of new universality classes,” Phys. Lett. B 314 (1993) 381–386.
  42. L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Yukawa CFTs and Emergent Supersymmetry,” PTEP 2016 no. 12, (2016) 12C105, arXiv:1607.05316 [hep-th].
  43. P. Liendo and J. Rong, “Seeking SUSY fixed points in the 4 −-- ϵitalic-ϵ\epsilonitalic_ϵ expansion,” JHEP 12 (2021) 033, arXiv:2107.14515 [hep-th].
  44. W. H. Pannell and A. Stergiou, “Scalar-Fermion Fixed Points in the ε𝜀\varepsilonitalic_ε Expansion,” arXiv:2305.14417 [hep-th].
  45. John Wiley & Sons, Incorporated, 1916.
  46. A. Codello, M. Safari, G. P. Vacca, and O. Zanusso, “Critical models with N≤𝑁absentN\leqitalic_N ≤4 scalars in d=4−ϵ𝑑4italic-ϵd=4-\epsilonitalic_d = 4 - italic_ϵ,” Phys. Rev. D 102 no. 6, (2020) 065017, arXiv:2008.04077 [hep-th].
  47. M. Hogervorst and C. Toldo, “Bounds on multiscalar CFTs in the ϵitalic-ϵ\epsilonitalic_ϵ expansion,” JHEP 04 (2021) 068, arXiv:2010.16222 [hep-th].
  48. H. Osborn and A. Stergiou, “Heavy handed quest for fixed points in multiple coupling scalar theories in the ϵitalic-ϵ\epsilonitalic_ϵ expansion,” JHEP 04 (2021) 128, arXiv:2010.15915 [hep-th].
  49. P. d. C. C. Pinto, H.-C. Herbig, D. Herden, and C. Seaton, “The Hilbert series of SL22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-invariants,” Communications in Contemporary Mathematics 22 (2020) 1950017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.