Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting the Brain's Network Structure for Automatic Identification of ADHD Subjects (2306.09239v1)

Published 15 Jun 2023 in q-bio.NC, cs.LG, and eess.IV

Abstract: Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state Functional Magnetic Resonance Imaging (fMRI) sequences of the brain. We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD-related differences lie in some specific regions of the brain and using features only from those regions is sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask that includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman, “A default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 676–682, 2001. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14647&tool=pmcentrez&rendertype=abstract
  2. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences, vol. 103, no. 37, pp. 13 848–13 853, 2006. [Online]. Available: http://www.pnas.org/content/103/37/13848.abstract
  3. M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-mode network activity distinguishes alzheimer’s disease from healthy aging: Evidence from functional mri,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4637–4642, 2004. [Online]. Available: http://www.pnas.org/content/101/13/4637.abstract
  4. V. L. Cherkassky, R. K. Kana, T. A. Keller, and M. A. Just, “Functional connectivity in a baseline resting-state network in autism.” Neuroreport, vol. 17, no. 16, pp. 1687–1690, Nov. 2006. [Online]. Available: http://dx.doi.org/10.1097/01.wnr.0000239956.45448.4c
  5. M. E. Raichle, “The brain’s dark energy.” Scientific American, vol. 302, no. 3, pp. 44–49, 2010. [Online]. Available: http://www.nature.com/doifinder/10.1038/scientificamerican0310-44
  6. D. H. Weissman, K. C. Roberts, K. M. Visscher, and M. G. Woldorff, “The neural bases of momentary lapses in attention,” Nature Neuroscience, vol. 9, no. 7, pp. 971–978, 2006. [Online]. Available: http://dx.doi.org/10.1038/nn1727
  7. F. X. Castellanos, J. N. Giedd, W. L. Marsh, S. D. Hamburger, A. C. Vaituzis, D. P. Dickstein, S. E. Sarfatti, Y. C. Vauss, J. W. Snell, N. Lange, and et al., “Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder.” Archives of General Psychiatry, vol. 53, no. 7, pp. 607–616, 1996. [Online]. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8660127
  8. S. Overmeyer, E. T. Bullmore, J. Suckling, A. Simmons, S. C. Williams, P. J. Santosh, and E. Taylor, “Distributed grey and white matter deficits in hyperkinetic disorder: Mri evidence for anatomical abnormality in an attentional network.” Psychological Medicine, vol. 31, no. 8, pp. 1425–1435, 2001. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11722157
  9. E. R. Sowell, P. M. Thompson, S. E. Welcome, A. L. Henkenius, A. W. Toga, and B. S. Peterson, “Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.” Lance, vol. 362, no. 9397, pp. 1699–1707, 2003. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/14643117
  10. L. J. Seidman, E. M. Valera, N. Makris, M. C. Monuteaux, D. L. Boriel, K. Kelkar, D. N. Kennedy, V. S. Caviness, G. Bush, M. Aleardi, and et al., “Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging.” Biological Psychiatry, vol. 60, no. 10, pp. 1071–1080, 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16876137
  11. G. Bush, J. A. Frazier, S. L. Rauch, L. J. Seidman, P. J. Whalen, M. A. Jenike, B. R. Rosen, and J. Biederman, “Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fmri and the counting stroop.” Biological Psychiatry, vol. 45, no. 12, pp. 1542–1552, 1999. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10376114
  12. S. Durston, “Differential patterns of striatal activation in young children with and without adhd,” Biological Psychiatry, vol. 53, no. 10, pp. 871–878, 2003. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0006322302019042
  13. M. H. Teicher, C. M. Anderson, A. Polcari, C. A. Glod, L. C. Maas, and P. F. Renshaw, “Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry.” Nature Medicine, vol. 6, no. 4, pp. 470–473, 2000. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10742158
  14. F. X. Castellanos, D. S. Margulies, C. Kelly, L. Q. Uddin, M. Ghaffari, A. Kirsch, D. Shaw, Z. Shehzad, A. Di Martino, B. Biswal, and et al., “Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 63, no. 3, pp. 332–337, 2008. [Online]. Available: http://eprints.soton.ac.uk/50138/
  15. L. Tian, T. Jiang, Y. Wang, Y. Zang, Y. He, M. Liang, M. Sui, Q. Cao, S. Hu, M. Peng, and et al., “Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder.” Neuroscience Letters, vol. 400, no. 1-2, pp. 39–43, 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16510242
  16. Q. Cao, Y. Zang, L. Sun, M. Sui, X. Long, Q. Zou, and Y. Wang, “Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study.” NeuroReport, vol. 17, no. 10, pp. 1033–1036, 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16791098
  17. Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with adhd revealed by resting-state functional mri.” Brain & Development, vol. 29, no. 2, pp. 83–91, 2007. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16919409
  18. S. Dey, A. R. Rao, and M. Shah, “Exploiting the brain’s network structure in identifying adhd subjects,” Frontiers in Systems Neuroscience, vol. 6, 2012. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnsys.2012.00075
  19. ——, “Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects,” Frontiers in Neural Circuits, vol. 8, 2014. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncir.2014.00064
  20. S. Dey, “Automatic detection of brain functional disorder using imaging data,” Electronic Theses and Dissertations, vol. 662, 2014. [Online]. Available: http://purl.fcla.edu/fcla/etd/CFE0005786
  21. R. Rao, S. Dey, M. Shah, and B. Solmaz, “Method and system for modeling and processing fMRI image data using a bag-of-words approach,” Utility US9 072 496B2, 02 01, 2013.
  22. C.-Z. Zhu, Y.-F. Zang, Q.-J. Cao, C.-G. Yan, Y. He, T.-Z. Jiang, M.-Q. Sui, and Y.-F. Wang, “Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder,” NeuroImage, vol. 40, no. 1, pp. 110 – 120, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1053811907010610
  23. NITRC, “Adhd-200 data processing,” http://nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline.
  24. O. Sporns, “Graph theory methods for the analysis of neural connectivity patterns.”
  25. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network motifs: Simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–827, 2002. [Online]. Available: http://www.sciencemag.org/content/298/5594/824.abstract
  26. A. Ma’ayan, G. A. Cecchi, J. Wagner, A. R. Rao, R. Iyengar, and G. Stolovitzky, “Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks,” Proceedings of the National Academy of Sciences, vol. 105, no. 49, pp. 19 235–19 240, 2008. [Online]. Available: http://www.pnas.org/content/105/49/19235.abstract
  27. H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010. [Online]. Available: http://dx.doi.org/10.1002/wics.101
  28. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, January 2002.
  29. R. C. Craddock, G. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg, “A whole brain fmri atlas generated via spatially constrained spectral clustering,” Human Brain Mapping, pp. n/a–n/a, 2011. [Online]. Available: http://dx.doi.org/10.1002/hbm.21333
  30. S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox, C. E. Mackay, N. Filippini, K. E. Watkins, R. Toro, A. R. Laird, and C. F. Beckmann, “Correspondence of the brain’s functional architecture during activation and rest,” Proceedings of the National Academy of Sciences, 2009. [Online]. Available: http://www.pnas.org/content/early/2009/07/17/0905267106.abstract
  31. B. Solmaz, S. Dey, A. R. Rao, and M. Shah, “Adhd classification using bag of words approach on network features,” D. R. Haynor and S. Ourselin, Eds., vol. 8314, no. 1.   SPIE, 2012, p. 83144T. [Online]. Available: http://link.aip.org/link/?PSI/8314/83144T/1
  32. M. Assaf, K. Jagannathan, V. D. Calhoun, L. Miller, M. C. Stevens, R. Sahl, J. G. O’Boyle, R. T. Schultz, and G. D. Pearlson, “Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients,” NeuroImage, vol. 53, no. 1, pp. 247 – 256, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1053811910008013
  33. L. Q. Uddin, A. Clare Kelly, B. B. Biswal, F. Xavier Castellanos, and M. P. Milham, “Functional connectivity of default mode network components: Correlation, anticorrelation, and causality,” Human Brain Mapping, vol. 30, no. 2, pp. 625–637, 2009. [Online]. Available: http://dx.doi.org/10.1002/hbm.20531
  34. K. J. Plessen, R. Bansal, H. Zhu, R. Whiteman, J. Amat, G. A. Quackenbush, L. Martin, K. Durkin, C. Blair, J. Royal, K. Hugdahl, and B. S. Peterson, “Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder,” Arch Gen Psychiatry, vol. 63, no. 7, pp. 795–807, 2006. [Online]. Available: http://archpsyc.ama-assn.org/cgi/content/abstract/63/7/795
  35. A. R. Rao, R. Bordawekar, and G. Cecchi, “Fast computation of functional networks from fmri activity: a multi-platform comparison,” B. M. Dawant and D. R. Haynor, Eds., vol. 7962, no. 1.   SPIE, 2011, p. 79624L. [Online]. Available: http://link.aip.org/link/?PSI/7962/79624L/1
  36. K. R. V. Dijk, M. R. Sabuncu, and R. L. Buckner, “The influence of head motion on intrinsic functional connectivity mri,” NeuroImage, vol. 59, no. 1, pp. 431 – 438, 2012, ¡ce:title¿Neuroergonomics: The human brain in action and at work¡/ce:title¿. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1053811911008214
  37. J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity mri networks arise from subject motion,” NeuroImage, vol. 59, no. 3, pp. 2142 – 2154, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1053811911011815

Summary

We haven't generated a summary for this paper yet.