Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review on Quantum Approximate Optimization Algorithm and its Variants (2306.09198v2)

Published 15 Jun 2023 in quant-ph

Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide. Keywords: Quantum Approximate Optimization Algorithm (QAOA), Variational Quantum Algorithms (VQAs), Quantum Optimization, Combinatorial Optimization Problems, NISQ Algorithms

Definition Search Book Streamline Icon: https://streamlinehq.com
References (271)
  1. The theory of variational hybrid quantum-classical algorithms. New J. Phys., 18(2):023023, February 2016. ISSN 1367-2630. doi: 10.1088/1367-2630/18/2/023023.
  2. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94(1):015004, February 2022. ISSN 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.94.015004.
  3. Variational quantum algorithms. Nat Rev Phys, 3(9):625–644, September 2021. ISSN 2522-5820. doi: 10.1038/s42254-021-00348-9.
  4. Variational Quantum Linear Solver, June 2020.
  5. Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A, 95(6):062317, June 2017. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.95.062317.
  6. Quantum-Classical Hybrid Algorithms. In Belal Ehsan Baaquie and Leong-Chuan Kwek, editors, Quantum Computers: Theory and Algorithms, pages 249–256. Springer Nature, Singapore, 2023. ISBN 978-981-19751-7-2. doi: 10.1007/978-981-19-7517-2_16.
  7. Self-verifying variational quantum simulation of lattice models. Nature, 569(7756):355–360, May 2019. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-019-1177-4.
  8. Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. Chem. Rev., 120(22):12685–12717, November 2020. ISSN 0009-2665, 1520-6890. doi: 10.1021/acs.chemrev.9b00829.
  9. Quantum embeddings for machine learning, February 2020.
  10. Variational quantum algorithm for molecular geometry optimization. Phys. Rev. A, 104(5):052402, November 2021. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.052402.
  11. Filtering variational quantum algorithms for combinatorial optimization. Quantum Sci. Technol., 7(1):015021, January 2022. ISSN 2058-9565. doi: 10.1088/2058-9565/ac3e54.
  12. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph], (arXiv:1411.4028), November 2014.
  13. A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem, June 2015.
  14. A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and Applications. In 2019 International Conference on Information and Communication Technology Convergence (ICTC), pages 138–142, October 2019. doi: 10.1109/ICTC46691.2019.8939749.
  15. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. Phys. Rev. X, 10(2):021067, June 2020. ISSN 2160-3308. doi: 10.1103/PhysRevX.10.021067.
  16. Beating classical heuristics for the binary paint shop problem with the quantum approximate optimization algorithm. Phys. Rev. A, 104(1):012403, July 2021a. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.012403.
  17. Quantum approximate optimization for hard problems in linear algebra. SciPost Phys. Core, 4(4):031, November 2021. ISSN 2666-9366. doi: 10.21468/SciPostPhysCore.4.4.031.
  18. Quantum Computing Techniques for Multi-Knapsack Problems, January 2023.
  19. Unsupervised strategies for identifying optimal parameters in Quantum Approximate Optimization Algorithm. EPJ Quantum Technol., 9(1):11, December 2022. ISSN 2662-4400, 2196-0763. doi: 10.1140/epjqt/s40507-022-00131-4.
  20. Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz, November 2019.
  21. Wasserstein Solution Quality and the Quantum Approximate Optimization Algorithm: A Portfolio Optimization Case Study. February 2022. doi: 10.48550/arXiv.2202.06782.
  22. Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem. Phys. Rev. Applied, 14(3):034009, September 2020. ISSN 2331-7019. doi: 10.1103/PhysRevApplied.14.034009.
  23. Hierarchical Improvement of Quantum Approximate Optimization Algorithm for Object Detection: (Invited Paper). In 2020 21st International Symposium on Quality Electronic Design (ISQED), pages 335–340, March 2020a. doi: 10.1109/ISQED48828.2020.9136973.
  24. Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection, July 2021.
  25. Constrained Quantum Optimization for Extractive Summarization on a Trapped-ion Quantum Computer. June 2022. doi: 10.48550/arXiv.2206.06290.
  26. Quantum optimization of maximum independent set using Rydberg atom arrays. Science, 376(6598):1209–1215, June 2022. doi: 10.1126/science.abo6587.
  27. Variational Quantum Factoring, August 2018.
  28. Analyzing the performance of variational quantum factoring on a superconducting quantum processor. npj Quantum Inf, 7(1):156, December 2021. ISSN 2056-6387. doi: 10.1038/s41534-021-00478-z.
  29. Variational Quantum Algorithms for Chemical Simulation and Drug Discovery, November 2022.
  30. Quantum Approximation for Wireless Scheduling. Applied Sciences, 10(20):7116, January 2020. ISSN 2076-3417. doi: 10.3390/app10207116.
  31. Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems. Sensors, 22(1):244, December 2021. ISSN 1424-8220. doi: 10.3390/s22010244.
  32. Combinatorial Optimization, volume 21 of Algorithms and Combinatorics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-24487-2 978-3-642-24488-9. doi: 10.1007/978-3-642-24488-9.
  33. Boolean Methods in Operations Research and Related Areas, volume 7 of Ökonometrie Und Unternehmensforschung / Econometrics and Operations Research. Springer Berlin Heidelberg, Berlin, Heidelberg, 1968. ISBN 978-3-642-85825-3 978-3-642-85823-9. doi: 10.1007/978-3-642-85823-9.
  34. Complexity and Approximation. Springer, Berlin, Heidelberg, 1999. ISBN 978-3-642-63581-6 978-3-642-58412-1. doi: 10.1007/978-3-642-58412-1.
  35. Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-642-08469-0 978-3-662-04565-7. doi: 10.1007/978-3-662-04565-7.
  36. Subhash Khot. Inapproximability of NP-complete Problems, Discrete Fourier Analysis, and Geometry. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pages 2676–2697. Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, June 2011. ISBN 978-981-4324-30-4. doi: 10.1142/9789814324359_0163.
  37. A unified modeling and solution framework for combinatorial optimization problems. OR Spectrum, 26(2):237–250, March 2004. ISSN 1436-6304. doi: 10.1007/s00291-003-0153-3.
  38. The unconstrained binary quadratic programming problem: A survey. J Comb Optim, 28(1):58–81, July 2014. ISSN 1573-2886. doi: 10.1007/s10878-014-9734-0.
  39. Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001. ISSN 0004-5411. doi: 10.1145/502090.502098.
  40. Howard Karloff. How Good is the Goemans–Williamson MAX CUT Algorithm? SIAM J. Comput., 29(1):336–350, January 1999. ISSN 0097-5397. doi: 10.1137/S0097539797321481.
  41. Michel X. Goemans. Worst-case comparison of valid inequalities for the TSP. Mathematical Programming, 69(1-3):335–349, July 1995. ISSN 0025-5610, 1436-4646. doi: 10.1007/BF01585563.
  42. Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2, 2014. ISSN 2296-424X.
  43. Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 56–62, October 2020. doi: 10.1109/QCE49297.2020.00018.
  44. Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models. page 46.
  45. Bas Lodewijks. Mapping NP-hard and NP-complete optimisation problems to Quadratic Unconstrained Binary Optimisation problems, August 2020.
  46. Ising machines as hardware solvers of combinatorial optimization problems. arXiv:2204.00276 [physics, physics:quant-ph], April 2022.
  47. Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf Process, 18(4):117, March 2019. ISSN 1573-1332. doi: 10.1007/s11128-019-2236-3.
  48. Resource efficient gadgets for compiling adiabatic quantum optimization problems. ANNALEN DER PHYSIK, 525(10-11):877–888, November 2013. ISSN 0003-3804, 1521-3889. doi: 10.1002/andp.201300120.
  49. Lower bounds on circuit depth of the quantum approximate optimization algorithm. Quantum Inf Process, 20(2):59, February 2021a. ISSN 1570-0755, 1573-1332. doi: 10.1007/s11128-021-03001-7.
  50. A quantum annealing architecture with all-to-all connectivity from local interactions. Science Advances, 1(9):e1500838, October 2015. doi: 10.1126/sciadv.1500838.
  51. A transmon quantum annealer: Decomposing many-body Ising constraints into pair interactions. Quantum Sci. Technol., 1(1):015008, December 2016. ISSN 2058-9565. doi: 10.1088/2058-9565/1/1/015008.
  52. Wolfgang Lechner. Quantum Approximate Optimization With Parallelizable Gates. IEEE Transactions on Quantum Engineering, 1:1–6, 2020. ISSN 2689-1808. doi: 10.1109/TQE.2020.3034798.
  53. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, November 1995. ISSN 0004-5411, 1557-735X. doi: 10.1145/227683.227684.
  54. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM J. Comput., 37(1):319–357, January 2007. ISSN 0097-5397. doi: 10.1137/S0097539705447372.
  55. Patterns for Hybrid Quantum Algorithms. In Johanna Barzen, editor, Service-Oriented Computing, volume 1429, pages 34–51. Springer International Publishing, Cham, 2021. ISBN 978-3-030-87567-1 978-3-030-87568-8. doi: 10.1007/978-3-030-87568-8_2.
  56. The Variational Quantum Eigensolver: A review of methods and best practices. Physics Reports, 986:1–128, November 2022. ISSN 03701573. doi: 10.1016/j.physrep.2022.08.003.
  57. VQE method: A short survey and recent developments. Mater Theory, 6(1):2, January 2022. ISSN 2509-8012. doi: 10.1186/s41313-021-00032-6.
  58. A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev., 51(5):1659–1684, 2022. ISSN 0306-0012, 1460-4744. doi: 10.1039/D1CS00932J.
  59. Interactively Applying the Variational Method to the Dihydrogen Molecule: Exploring Bonding and Antibonding. J. Chem. Educ., 93(9):1578–1585, September 2016. ISSN 0021-9584, 1938-1328. doi: 10.1021/acs.jchemed.6b00017.
  60. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, September 2017. ISSN 1476-4687. doi: 10.1038/nature23879.
  61. A variational eigenvalue solver on a photonic quantum processor. Nat Commun, 5(1):4213, July 2014. ISSN 2041-1723. doi: 10.1038/ncomms5213.
  62. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Adv Quantum Tech, 2(12):1900070, December 2019. ISSN 2511-9044, 2511-9044. doi: 10.1002/qute.201900070.
  63. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum, 4:314, August 2020. ISSN 2521-327X. doi: 10.22331/q-2020-08-31-314.
  64. General parameter-shift rules for quantum gradients. Quantum, 6:677, March 2022. doi: 10.22331/q-2022-03-30-677.
  65. Unsupervised Machine Learning on a Hybrid Quantum Computer. (arXiv:1712.05771), December 2017. doi: 10.48550/arXiv.1712.05771.
  66. Feedback-Based Quantum Optimization. Phys. Rev. Lett., 129(25):250502, December 2022a. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.129.250502.
  67. Quantum Computation by Adiabatic Evolution, January 2000.
  68. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science, 292(5516):472–475, April 2001. doi: 10.1126/science.1057726.
  69. Adiabatic quantum computation. Rev. Mod. Phys., 90(1):015002, January 2018. ISSN 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.90.015002.
  70. Different Strategies for Optimization Using the Quantum Adiabatic Algorithm, January 2014.
  71. Barren plateaus in quantum neural network training landscapes. Nat Commun, 9(1):4812, December 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-07090-4.
  72. Analog quantum approximate optimization algorithm. Quantum Sci. Technol., 7(4):045035, September 2022. ISSN 2058-9565. doi: 10.1088/2058-9565/ac91f0.
  73. Implementing Graph-Theoretic Feature Selection by Quantum Approximate Optimization Algorithm. IEEE Transactions on Neural Networks and Learning Systems, pages 1–14, 2022. ISSN 2162-2388. doi: 10.1109/TNNLS.2022.3190042.
  74. Native measurement-based quantum approximate optimization algorithm applied to the Max K -Cut problem. Phys. Rev. A, 106(2):022437, August 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.022437.
  75. Ion native variational ansatz for quantum approximate optimization. Phys. Rev. A, 106(3):032418, September 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.032418.
  76. Generating target graph couplings for the quantum approximate optimization algorithm from native quantum hardware couplings. Phys. Rev. A, 106(2):022606, August 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.022606.
  77. Multi-angle quantum approximate optimization algorithm. Sci Rep, 12(1):6781, April 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-10555-8.
  78. Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 97–103, Broomfield, CO, USA, September 2022. IEEE. ISBN 978-1-66549-113-6. doi: 10.1109/QCE53715.2022.00028.
  79. Digitized-counterdiabatic quantum approximate optimization algorithm. Phys. Rev. Research, 4(1):013141, July 2021. doi: 10.1103/PhysRevResearch.4.013141.
  80. Counterdiabaticity and the quantum approximate optimization algorithm. Quantum, 6:635, January 2022. ISSN 2521-327X. doi: 10.22331/q-2022-01-27-635.
  81. Quantum approximate optimization algorithm with adaptive bias fields. Phys. Rev. Research, 4(2):023249, June 2022. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.4.023249.
  82. An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. May 2020. doi: 10.48550/arXiv.2005.10258.
  83. Obstacles to Variational Quantum Optimization from Symmetry Protection. Phys. Rev. Lett., 125(26):260505, December 2020. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.125.260505.
  84. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms, 12(2):34, February 2019. ISSN 1999-4893. doi: 10.3390/a12020034.
  85. Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 72–82, October 2020. doi: 10.1109/QCE49297.2020.00020.
  86. Threshold-Based Quantum Optimization. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 137–147, October 2021. doi: 10.1109/QCE52317.2021.00030.
  87. Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm. Algorithms, 15(6):202, June 2022. ISSN 1999-4893. doi: 10.3390/a15060202.
  88. Warm-starting quantum optimization. Quantum, 5:479, June 2021. ISSN 2521-327X. doi: 10.22331/q-2021-06-17-479.
  89. Lyapunov-control-inspired strategies for quantum combinatorial optimization. Phys. Rev. A, 106(6):062414, December 2022b. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.062414.
  90. Fermionic Quantum Approximate Optimization Algorithm, January 2023.
  91. Quantum Dropout for Efficient Quantum Approximate Optimization Algorithm on Combinatorial Optimization Problems, March 2022.
  92. Classically optimal variational quantum algorithms, March 2021a.
  93. Multi-Angle QAOA Does Not Always Need All Its Angles, October 2022.
  94. Rebekah Herrman. Relating the multi-angle quantum approximate optimization algorithm and continuous-time quantum walks on dynamic graphs, September 2022.
  95. M. B. Hastings. Classical and Quantum Bounded Depth Approximation Algorithms, August 2019.
  96. Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems. Phys. Rev. Lett., 123(9):090602, August 2019. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.123.090602.
  97. Tobias Graß. Quantum Annealing with Longitudinal Bias Fields. Phys. Rev. Lett., 123(12):120501, September 2019. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.123.120501.
  98. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys., 91(4):045001, October 2019. ISSN 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.91.045001.
  99. Shortcuts to the quantum approximate optimization algorithm. Phys. Rev. A, 105(4):042415, April 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.105.042415.
  100. Approximating the quantum approximate optimization algorithm with digital-analog interactions. Phys. Rev. A, 106(4):042446, October 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.042446.
  101. Reinforcement Learning Assisted Recursive QAOA, July 2022.
  102. Hybrid quantum-classical algorithms for approximate graph coloring. Quantum, 6:678, March 2022. ISSN 2521-327X. doi: 10.22331/q-2022-03-30-678.
  103. Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs, February 2023.
  104. Analytical framework for quantum alternating operator ansätze. Quantum Sci. Technol., 8(1):015017, December 2022. ISSN 2058-9565. doi: 10.1088/2058-9565/aca3ce.
  105. Quantum approximate optimization for combinatorial problems with constraints. Information Sciences, 619:98–125, January 2023. ISSN 0020-0255. doi: 10.1016/j.ins.2022.11.020.
  106. The Quantum Alternating Operator Ansatz on Maximum k-Vertex Cover. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 83–92, Denver, CO, USA, October 2020. IEEE. ISBN 978-1-72818-969-7. doi: 10.1109/QCE49297.2020.00021.
  107. X Y mixers: Analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A, 101(1):012320, January 2020. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.101.012320.
  108. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ’96, pages 212–219, Philadelphia, Pennsylvania, United States, 1996. ACM Press. ISBN 978-0-89791-785-8. doi: 10.1145/237814.237866.
  109. Lov K. Grover. Fixed-Point Quantum Search. Phys. Rev. Lett., 95(15):150501, October 2005. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.95.150501.
  110. Reachability Deficits in Quantum Approximate Optimization. Phys. Rev. Lett., 124(9):090504, March 2020. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.124.090504.
  111. Freedom of the mixer rotation axis improves performance in the quantum approximate optimization algorithm. Phys. Rev. A, 104(6):062428, December 2021. doi: 10.1103/PhysRevA.104.062428.
  112. Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Research, 2(2):023074, April 2020b. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.2.023074.
  113. Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 10–16, October 2021. doi: 10.1109/QCE52317.2021.00016.
  114. Graph neural network initialisation of quantum approximate optimisation, November 2021.
  115. Transferability of optimal QAOA parameters between random graphs, June 2021.
  116. Multistart Methods for Quantum Approximate optimization. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–8, Waltham, MA, USA, September 2019. IEEE. ISBN 978-1-72815-020-8. doi: 10.1109/HPEC.2019.8916288.
  117. QAOAKit: A Toolkit for Reproducible Study, Application, and Verification of the QAOA. In 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS), pages 64–71, November 2021a. doi: 10.1109/QCS54837.2021.00011.
  118. Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum, 5:491, July 2021. ISSN 2521-327X. doi: 10.22331/q-2021-07-01-491.
  119. A study of the performance of classical minimizers in the Quantum Approximate Optimization Algorithm. Journal of Computational and Applied Mathematics, 404:113388, April 2022. ISSN 0377-0427. doi: 10.1016/j.cam.2021.113388.
  120. Performance comparison of optimization methods on variational quantum algorithms. Phys. Rev. A, 107(3):032407, March 2023. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.107.032407.
  121. A comparison of various classical optimizers for a variational quantum linear solver. Quantum Inf Process, 20(6):202, June 2021. ISSN 1573-1332. doi: 10.1007/s11128-021-03140-x.
  122. Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm. Applied Soft Computing, 142:110296, July 2023. ISSN 15684946. doi: 10.1016/j.asoc.2023.110296.
  123. Robust Control Optimization for Quantum Approximate Optimization Algorithms. IFAC-PapersOnLine, 53(2):242–249, January 2020. ISSN 2405-8963. doi: 10.1016/j.ifacol.2020.12.130.
  124. Gavin E. Crooks. Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem. arXiv:1811.08419 [quant-ph], November 2018.
  125. Training the quantum approximate optimization algorithm without access to a quantum processing unit. Quantum Sci. Technol., 5(3):034008, May 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/ab8c2b.
  126. Using models to improve optimizers for variational quantum algorithms. Quantum Sci. Technol., 5(4):044008, September 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/abb6d9.
  127. Policy Gradient based Quantum Approximate Optimization Algorithm. In Proceedings of The First Mathematical and Scientific Machine Learning Conference, pages 605–634. PMLR, August 2020.
  128. Empirical performance bounds for quantum approximate optimization. Quantum Inf Process, 20(12):403, December 2021. ISSN 1570-0755, 1573-1332. doi: 10.1007/s11128-021-03342-3.
  129. Accelerating Quantum Approximate Optimization Algorithm using Machine Learning. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 686–689, March 2020a. ISSN 1558-1101. doi: 10.23919/DATE48585.2020.9116348.
  130. A Quantum Approximate Optimization Algorithm with Metalearning for MaxCut Problem and Its Simulation via TensorFlow Quantum. Mathematical Problems in Engineering, 2021:1–11, March 2021a. ISSN 1563-5147, 1024-123X. doi: 10.1155/2021/6655455.
  131. Max Wilson. Optimizing quantum heuristics with meta-learning. page 14, 2021.
  132. Capturing Symmetries of Quantum Optimization Algorithms Using Graph Neural Networks. Symmetry, 14(12):2593, December 2022. ISSN 2073-8994. doi: 10.3390/sym14122593.
  133. Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems. AAAI, 34(03):2367–2375, April 2020. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i03.5616.
  134. Layerwise learning for quantum neural networks. Quantum Mach. Intell., 3(1):5, June 2021. ISSN 2524-4906, 2524-4914. doi: 10.1007/s42484-020-00036-4.
  135. Parameter concentrations in quantum approximate optimization. Phys. Rev. A, 104(1):L010401, July 2021. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.L010401.
  136. Exploiting Symmetry Reduces the Cost of Training QAOA. IEEE Trans. Quantum Eng., 2:1–9, 2021. ISSN 2689-1808. doi: 10.1109/TQE.2021.3066275.
  137. Classical symmetries and the Quantum Approximate Optimization Algorithm. Quantum Inf Process, 20(11):359, November 2021b. ISSN 1570-0755, 1573-1332. doi: 10.1007/s11128-021-03298-4.
  138. Quantum approximate optimization algorithm for MaxCut: A fermionic view. Phys. Rev. A, 97(2):022304, February 2018. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.97.022304.
  139. Error-mitigated Quantum Approximate Optimization via Learning-based Adaptive Optimization, March 2023.
  140. Reinforcement Learning with Quantum Variational Circuits. arXiv:2008.07524 [quant-ph, stat], August 2020.
  141. Reinforcement Learning Enhanced Quantum-inspired Algorithm for Combinatorial Optimization. arXiv:2002.04676 [cs, stat], February 2020.
  142. Improving Variational Quantum Optimization using CVaR. Quantum, 4:256, April 2020. ISSN 2521-327X. doi: 10.22331/q-2020-04-20-256.
  143. Entanglement perspective on the quantum approximate optimization algorithm. Phys. Rev. A, 106(2):022423, August 2022a. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.106.022423.
  144. Applying the quantum approximate optimization algorithm to the minimum vertex cover problem. Applied Soft Computing, 118:108554, March 2022a. ISSN 1568-4946. doi: 10.1016/j.asoc.2022.108554.
  145. Optimization by Simulated Annealing. Science, 220(4598):671–680, May 1983. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.220.4598.671.
  146. Optimizing QAOA: Success Probability and Runtime Dependence on Circuit Depth, May 2019.
  147. Quantum Linear System Solver Based on Time-optimal Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm. ACM Transactions on Quantum Computing, 3(2):5:1–5:28, March 2022. ISSN 2643-6809. doi: 10.1145/3498331.
  148. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett., 103(15):150502, October 2009. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.103.150502.
  149. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision. SIAM J. Comput., 46(6):1920–1950, January 2017. ISSN 0097-5397. doi: 10.1137/16M1087072.
  150. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, Phoenix AZ USA, June 2019. ACM. ISBN 978-1-4503-6705-9. doi: 10.1145/3313276.3316366.
  151. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci Rep, 9(1):6903, May 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-43176-9.
  152. Noise-induced barren plateaus in variational quantum algorithms. Nat Commun, 12(1):6961, December 2021b. ISSN 2041-1723. doi: 10.1038/s41467-021-27045-6.
  153. Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization. PRX Quantum, 1(2):020312, November 2020. ISSN 2691-3399. doi: 10.1103/PRXQuantum.1.020312.
  154. Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage. PRX Quantum, 2(1):010103, March 2021. ISSN 2691-3399. doi: 10.1103/PRXQuantum.2.010103.
  155. Low-Depth Mechanisms for Quantum Optimization. PRX Quantum, 2(3):030312, July 2021. ISSN 2691-3399. doi: 10.1103/PRXQuantum.2.030312.
  156. Evaluation of QAOA based on the approximation ratio of individual samples. Quantum Sci. Technol., 7(4):045014, October 2022. ISSN 2058-9565. doi: 10.1088/2058-9565/ac6973.
  157. Adrian Kuegel. Improved Exact Solver for the Weighted MAX-SAT Problem. In POS-10. Pragmatics of SAT, pages 15–1. doi: 10.29007/38lm.
  158. What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO. INFORMS Journal on Computing, October 2018. doi: 10.1287/ijoc.2017.0798.
  159. Quantum Annealing: A journey through Digitalization, Control, and hybrid Quantum Variational schemes, December 2019.
  160. MaxCut quantum approximate optimization algorithm performance guarantees for p >>> 1. Phys. Rev. A, 103(4):042612, April 2021b. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.103.042612.
  161. Kunal Marwaha. Local classical MAX-CUT algorithm outperforms $p=2$ QAOA on high-girth regular graphs. Quantum, 5:437, April 2021. ISSN 2521-327X. doi: 10.22331/q-2021-04-20-437.
  162. Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:21, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-217-4. doi: 10.4230/LIPIcs.ITCS.2022.14.
  163. The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model. In François Le Gall and Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022), volume 232 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:21, Dagstuhl, Germany, 2022a. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-237-2. doi: 10.4230/LIPIcs.TQC.2022.7.
  164. Matthew B. Hastings. A Classical Algorithm Which Also Beats $\frac{1}{2}+\frac{2}{\pi}\frac{1}{\sqrt{}}D{}{}$ For High Girth MAX-CUT, November 2021.
  165. The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: Worst Case Examples, May 2020a.
  166. The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size. Quantum, 6:759, July 2022. ISSN 2521-327X. doi: 10.22331/q-2022-07-07-759.
  167. Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Commun.Math. Phys., 112(1):3–20, March 1987. ISSN 1432-0916. doi: 10.1007/BF01217677.
  168. Semidefinite programs on sparse random graphs and their application to community detection. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 814–827, New York, NY, USA, June 2016. Association for Computing Machinery. ISBN 978-1-4503-4132-5. doi: 10.1145/2897518.2897548.
  169. Computational Hardness of Certifying Bounds on Constrained PCA Problems. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 78:1–78:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-134-4. doi: 10.4230/LIPIcs.ITCS.2020.78.
  170. Andrea Montanari. Optimization of the Sherrington–Kirkpatrick Hamiltonian. SIAM J. Comput., pages FOCS19–1, January 2021. ISSN 0097-5397. doi: 10.1137/20M132016X.
  171. Optimization of mean-field spin glasses. The Annals of Probability, 49(6):2922–2960, November 2021. ISSN 0091-1798, 2168-894X. doi: 10.1214/21-AOP1519.
  172. Cedric Yen-Yu Lin and Yechao Zhu. Performance of QAOA on Typical Instances of Constraint Satisfaction Problems with Bounded Degree, January 2016.
  173. Bounds on approximating Max $k$XOR with quantum and classical local algorithms. Quantum, 6:757, July 2022. ISSN 2521-327X. doi: 10.22331/q-2022-07-07-757.
  174. The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case, April 2020b.
  175. Limitations of Local Quantum Algorithms on Random Max-k-XOR and Beyond, February 2022.
  176. Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 335–343, October 2022b. doi: 10.1109/FOCS54457.2022.00039.
  177. MAX CUT in cubic graphs. Journal of Algorithms, 53(2):169–185, November 2004. ISSN 01966774. doi: 10.1016/j.jalgor.2004.06.001.
  178. Large Cuts with Local Algorithms on Triangle-Free Graphs. The Electronic Journal of Combinatorics, pages P4.21–P4.21, October 2017. ISSN 1077-8926. doi: 10.37236/6862.
  179. G. Parisi. Infinite Number of Order Parameters for Spin-Glasses. Phys. Rev. Lett., 43(23):1754–1756, December 1979. ISSN 0031-9007. doi: 10.1103/PhysRevLett.43.1754.
  180. David Gamarnik. The overlap gap property: A topological barrier to optimizing over random structures. Proceedings of the National Academy of Sciences, 118(41):e2108492118, October 2021. doi: 10.1073/pnas.2108492118.
  181. For Fixed Control Parameters the Quantum Approximate Optimization Algorithm’s Objective Function Value Concentrates for Typical Instances, December 2018.
  182. Extremal cuts of sparse random graphs. The Annals of Probability, 45(2):1190–1217, March 2017. ISSN 0091-1798, 2168-894X. doi: 10.1214/15-AOP1084.
  183. Predicting parameters for the Quantum Approximate Optimization Algorithm for MAX-CUT from the infinite-size limit. arXiv:2110.10685 [quant-ph], October 2021.
  184. Beating the random assignment on constraint satisfaction problems of bounded degree, August 2015.
  185. An Introduction to Quantum Optimization Approximation Algorithm. page 16, 2018.
  186. The overlap gap property and approximate message passing algorithms for $p$-spin models. Ann. Probab., 49(1), January 2021. ISSN 0091-1798. doi: 10.1214/20-AOP1448.
  187. Solving boolean satisfiability problems with the quantum approximate optimization algorithm, August 2022.
  188. Improving WalkSAT By Effective Tie-Breaking and Efficient Implementation. The Computer Journal, 58(11):2864–2875, November 2015. ISSN 0010-4620, 1460-2067. doi: 10.1093/comjnl/bxu135.
  189. Quantum systems on non-k-hyperfinite complexes: A generalization of classical statistical mechanics on expander graphs. Quantum Info. Comput., 14(1–2):144–180, January 2014. ISSN 1533-7146.
  190. Limits of Local Algorithms Over Sparse Random Graphs. The Annals of Probability, 45(4):2353–2376, 2017a. ISSN 0091-1798.
  191. Performance of Sequential Local Algorithms for the Random NAE-$K$-SAT Problem. SIAM J. Comput., 46(2):590–619, January 2017b. ISSN 0097-5397. doi: 10.1137/140989728.
  192. Suboptimality of local algorithms for a class of max-cut problems. The Annals of Probability, 47(3):1587–1618, May 2019. ISSN 0091-1798, 2168-894X. doi: 10.1214/18-AOP1291.
  193. How Much Entanglement Do Quantum Optimization Algorithms Require? In Quantum 2.0 Conference and Exhibition (2022), Paper QM4A.2, page QM4A.2. Optica Publishing Group, June 2022. doi: 10.1364/QUANTUM.2022.QM4A.2.
  194. Calibrating the Classical Hardness of the Quantum Approximate Optimization Algorithm. PRX Quantum, 3(4):040339, December 2022b. doi: 10.1103/PRXQuantum.3.040339.
  195. The Quantum Approximate Optimization Algorithm performance with low entanglement and high circuit depth, July 2022.
  196. Impact of graph structures for QAOA on MaxCut. Quantum Inf Process, 20(9):289, September 2021b. ISSN 1573-1332. doi: 10.1007/s11128-021-03232-8.
  197. Sampling Frequency Thresholds for Quantum Advantage of Quantum Approximate Optimization Algorithm, June 2022.
  198. To quantum or not to quantum: Towards algorithm selection in near-term quantum optimization. Quantum Sci. Technol., 5(4):044009, October 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/abb8e5.
  199. ORNL Quantum Computing Institute / qaoa-dataset-version1 ⋅⋅\cdot⋅ GitLab. https://code.ornl.gov/qci/qaoa-dataset-version1, April 2021.
  200. Benchmarking the quantum approximate optimization algorithm. Quantum Inf Process, 19(7):197, June 2020. ISSN 1573-1332. doi: 10.1007/s11128-020-02692-8.
  201. Andreas Bengtsson. Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm. Phys. Rev. Applied, 14(3), 2020. doi: 10.1103/PhysRevApplied.14.034010.
  202. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys., 17(3):332–336, March 2021. ISSN 1745-2481. doi: 10.1038/s41567-020-01105-y.
  203. Design-Space Exploration of Quantum Approximate Optimization Algorithm under Noise. In 2020 IEEE Custom Integrated Circuits Conference (CICC), pages 1–4, March 2020b. doi: 10.1109/CICC48029.2020.9075903.
  204. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences, 117(41):25396–25401, October 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2006373117.
  205. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photon, 12(9):534–539, September 2018. ISSN 1749-4893. doi: 10.1038/s41566-018-0236-y.
  206. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95(4):042308, April 2017. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.95.042308.
  207. Noise-resilient variational hybrid quantum-classical optimization. Phys. Rev. A, 102(5):052414, November 2020. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.102.052414.
  208. Noise resilience of variational quantum compiling. New J. Phys., 22(4):043006, April 2020. ISSN 1367-2630. doi: 10.1088/1367-2630/ab784c.
  209. Evaluating the noise resilience of variational quantum algorithms. Phys. Rev. A, 104(2):022403, August 2021. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.022403.
  210. Analysis of The Vehicle Routing Problem Sovled via Hybrid Quantum Algorithms in Presence of Noisy Channels, May 2022.
  211. Iteration Complexity of Variational Quantum Algorithms, September 2022.
  212. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm. Chinese Phys. Lett., 38(3):030302, March 2021. ISSN 0256-307X, 1741-3540. doi: 10.1088/0256-307X/38/3/030302.
  213. Characterizing local noise in QAOA circuits. IOPSciNotes, 1(2):025208, August 2020. ISSN 2633-1357. doi: 10.1088/2633-1357/abb0d7.
  214. Scaling quantum approximate optimization on near-term hardware. Sci Rep, 12(1):12388, July 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-14767-w.
  215. Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers. IEEE Trans. Quantum Eng., 3:1–20, 2022. ISSN 2689-1808. doi: 10.1109/TQE.2021.3140190.
  216. Training saturation in layerwise quantum approximate optimization. Phys. Rev. A, 104(3):L030401, September 2021. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.L030401.
  217. Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays. Phys. Rev. B, 104(4):045420, July 2021. ISSN 2469-9950, 2469-9969. doi: 10.1103/PhysRevB.104.045420.
  218. Analyzing crosstalk error in the NISQ era. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 428–430, July 2021. doi: 10.1109/ISVLSI51109.2021.00084.
  219. Guido Burkard. Non-Markovian qubit dynamics in the presence of 1 / f noise. Phys. Rev. B, 79(12):125317, March 2009. ISSN 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.79.125317.
  220. Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. Phys. Rev. Lett., 123(19):190502, November 2019. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.123.190502.
  221. Modeling and mitigation of cross-talk effects in readout noise with applications to the Quantum Approximate Optimization Algorithm. Quantum, 5:464, June 2021. ISSN 2521-327X. doi: 10.22331/q-2021-06-01-464.
  222. Quantifying the Impact of Precision Errors on Quantum Approximate Optimization Algorithms, November 2021.
  223. Ability of error correlations to improve the performance of variational quantum algorithms. Phys. Rev. A, 107:042426, Apr 2023. doi: 10.1103/PhysRevA.107.042426. URL https://link.aps.org/doi/10.1103/PhysRevA.107.042426.
  224. Limitations of optimization algorithms on noisy quantum devices. Nat. Phys., 17(11):1221–1227, November 2021. ISSN 1745-2473, 1745-2481. doi: 10.1038/s41567-021-01356-3.
  225. Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware. Quantum, 6:870, December 2022. doi: 10.22331/q-2022-12-07-870.
  226. Optimized SWAP networks with equivalent circuit averaging for QAOA. Phys. Rev. Research, 4(3):033028, July 2022. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.4.033028.
  227. Limitations of Variational Quantum Algorithms: A Quantum Optimal Transport Approach. PRX Quantum, 4(1):010309, January 2023. ISSN 2691-3399. doi: 10.1103/PRXQuantum.4.010309.
  228. Error Propagation in NISQ Devices for Solving Classical Optimization Problems. PRX Quantum, 3(4):040326, December 2022. ISSN 2691-3399. doi: 10.1103/PRXQuantum.3.040326.
  229. Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 291–300, October 2021. doi: 10.1109/QCE52317.2021.00046.
  230. Circuit Compilation Methodologies for Quantum Approximate Optimization Algorithm. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 215–228, October 2020c. doi: 10.1109/MICRO50266.2020.00029.
  231. Noise Resilient Compilation Policies for Quantum Approximate Optimization Algorithm. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–7, November 2020d.
  232. An Efficient Circuit Compilation Flow for Quantum Approximate Optimization Algorithm. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, July 2020e. doi: 10.1109/DAC18072.2020.9218558.
  233. Optimizing Ansatz Design in QAOA for Max-cut, June 2021a.
  234. Depth Optimized Ansatz Circuit in QAOA for Max-Cut, October 2021b.
  235. Low-cost error mitigation by symmetry verification. Phys. Rev. A, 98(6):062339, December 2018. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.98.062339.
  236. Error-Mitigated Digital Quantum Simulation. Phys. Rev. Lett., 122(18):180501, May 2019. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.122.180501.
  237. Error mitigation for variational quantum algorithms through mid-circuit measurements. Phys. Rev. A, 105(2):022441, February 2022. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.105.022441.
  238. Quantum algorithms with local particle-number conservation: Noise effects and error correction. Phys. Rev. A, 103(4):042412, April 2021b. ISSN 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.103.042412.
  239. Error Mitigation for Quantum Approximate Optimization, January 2023.
  240. Quantum Optimization via Four-Body Rydberg Gates. Phys. Rev. Lett., 128(12):120503, March 2022. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.128.120503.
  241. Bálint Koczor. Exponential Error Suppression for Near-Term Quantum Devices. Phys. Rev. X, 11(3):031057, September 2021. ISSN 2160-3308. doi: 10.1103/PhysRevX.11.031057.
  242. Virtual Distillation for Quantum Error Mitigation. Phys. Rev. X, 11(4):041036, November 2021. ISSN 2160-3308. doi: 10.1103/PhysRevX.11.041036.
  243. Qubit-efficient exponential suppression of errors, March 2021.
  244. Quantum Enhanced Greedy Solver for Optimization Problems, March 2023.
  245. Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits, May 2023.
  246. High-Round QAOA for MAX $k$-SAT on Trapped Ion NISQ Devices, June 2023a.
  247. QAOA with $N\cdot p\geq 200$, March 2023.
  248. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906):457–462, April 2022. ISSN 1476-4687. doi: 10.1038/s41586-022-04603-6.
  249. Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems on NISQ Computers. volume 13948, pages 240–258. 2023b. doi: 10.1007/978-3-031-32041-5_13.
  250. Effects of Dynamical Decoupling and Pulse-level Optimizations on IBM Quantum Computers. IEEE Trans. Quantum Eng., 3:1–10, 2022. ISSN 2689-1808. doi: 10.1109/TQE.2022.3203153.
  251. Analysis of Quantum Approximate Optimization Algorithm under Realistic Noise in Superconducting Qubits. July 2019. doi: 10.48550/arXiv.1907.09631.
  252. Implementation of XY entangling gates with a single calibrated pulse. Nat Electron, 3(12):744–750, December 2020. ISSN 2520-1131. doi: 10.1038/s41928-020-00498-1.
  253. Experimental benchmarking of an automated deterministic error suppression workflow for quantum algorithms, May 2023.
  254. Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets. PRX Quantum, 1(2):110304, October 2020. ISSN 2691-3399. doi: 10.1103/PRXQuantum.1.020304.
  255. Quantum approximate optimization algorithm for qudit systems with long-range interactions, April 2022.
  256. Quantum Approximate Optimization Algorithm with Cat Qubits, May 2023.
  257. QPack Scores: Quantitative performance metrics for application-oriented quantum computer benchmarking, May 2022.
  258. A quantum-classical cloud platform optimized for variational hybrid algorithms. Quantum Sci. Technol., 5(2):024003, April 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/ab7559.
  259. Warm-Starting and Quantum Computing: A Systematic Mapping Study, March 2023.
  260. Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography. Quantum, 4:257, April 2020. ISSN 2521-327X. doi: 10.22331/q-2020-04-24-257.
  261. A Compilation Framework for Photonic One-Way Quantum Computation, September 2022b.
  262. Optimizing Quantum Algorithms on Bipotent Architectures, June 2023.
  263. Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm. IEEE Transactions on Intelligent Transportation Systems, pages 1–10, 2022. ISSN 1558-0016. doi: 10.1109/TITS.2022.3172241.
  264. Portfolio optimization with digitized counterdiabatic quantum algorithms. Phys. Rev. Research, 4(4):043204, December 2022. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.4.043204.
  265. Simulations of frustrated Ising Hamiltonians using quantum approximate optimization. Phil. Trans. R. Soc. A., 381(2241):20210414, January 2023. ISSN 1364-503X, 1471-2962. doi: 10.1098/rsta.2021.0414.
  266. Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems. Phys. Rev. Lett., 126(7):070505, February 2021. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.126.070505.
  267. Investigating quantum approximate optimization algorithms under bang-bang protocols. Phys. Rev. Res., 2(3):033402, September 2020. doi: 10.1103/PhysRevResearch.2.033402.
  268. Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection. IEEE Transactions on Communications, 70(8):5386–5400, August 2022. ISSN 1558-0857. doi: 10.1109/TCOMM.2022.3185287.
  269. Digitized-Counterdiabatic Quantum Algorithm for Protein Folding, December 2022.
  270. QUBO formulations for training machine learning models. Sci Rep, 11(1):10029, May 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-89461-4.
  271. Continuous-variable quantum neural networks. Phys. Rev. Research, 1(3):033063, October 2019. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.1.033063.
Citations (116)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com