Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Image Tracing with Convolutional Autoencoders by High-Pass Filter Preprocessing (2306.09039v1)

Published 15 Jun 2023 in cs.CV

Abstract: The process of transforming a raster image into a vector representation is known as image tracing. This study looks into several processing methods that include high-pass filtering, autoencoding, and vectorization to extract an abstract representation of an image. According to the findings, rebuilding an image with autoencoders, high-pass filtering it, and then vectorizing it can represent the image more abstractly while increasing the effectiveness of the vectorization process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Fischer and Z. Bettouche, “High-pass filters preprocessing in image tracing with convolutional autoencoders,” in IARIA, Copyright: Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISSN: 2308-4170, ISBN: 978-1-61208-954-6, Barcelona, Spain; April 28, 2022.
  2. P. Selinger, “Potrace : a polygon-based tracing algorithm,” in Potrace, 2003.
  3. N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge detection filter using the sobel operator,” IEEE Journal of solid-state circuits, vol. 23, no. 2, pp. 358–367, 1988.
  4. J. Canny, “A computational approach to edge detection,” IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.
  5. S. Lu, W. Jiang, X. Ding, C. S. Kaplan, X. Jin, F. Gao, and J. Chen, “Depth-aware image vectorization and editing,” Vis. Comput., vol. 35, no. 6–8, p. 1027–1039, jun 2019. [Online]. Available: https://doi.org/10.1007/s00371-019-01671-0
  6. A. Bera, “Fast vectorization and upscaling images with natural objects using canny edge detection,” in 2011 3rd International Conference on Electronics Computer Technology, vol. 3, 2011, pp. 164–167.
  7. K.-W. Chen, Y.-S. Luo, Y.-C. Lai, Y.-L. Chen, C.-Y. Yao, H.-K. Chu, and T.-Y. Lee, “Image vectorization with real-time thin-plate spline,” IEEE Transactions on Multimedia, vol. 22, no. 1, pp. 15–29, 2020.
  8. M. Bessmeltsev and J. Solomon, “Vectorization of line drawings via polyvector fields,” 2018.
  9. V. Lacroix, “Raster-to-vector conversion: Problems and tools towards a solution a map segmentation application,” in Raster-to-Vector Conversion, 03 2009, pp. 318 – 321.
  10. J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25.   Curran Associates, Inc., 2012.
  11. Z. Gong, L. Xu, Z. Tian, J. Bao, and D. Ming, “Road network extraction and vectorization of remote sensing images based on deep learning,” in 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp. 303–307.
  12. A. Fischer and M. Amesberger, “Improving image tracing with artificial intelligence,” in 2021 11th International Conference on Advanced Computer Information Technologies (ACIT), 2021, pp. 714–717.
  13. W. Zhang, J. Sun, and X. Tang, “Cat head detection - how to effectively exploit shape and texture features,” in ECCV, 2008.
  14. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning,” in 12th {normal-{\{{USENIX}normal-}\}} Symposium on Operating Systems Design and Implementation ({normal-{\{{OSDI}normal-}\}} 16), 2016, pp. 265–283.
  15. F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/fchollet/keras
  16. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  17. C. Sammut and G. I. Webb, “Mean squared error,” Encyclopedia of Machine Learning, no. 4, pp. 653–653, 2010.
  18. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  19. S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.

Summary

We haven't generated a summary for this paper yet.