Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annotator Consensus Prediction for Medical Image Segmentation with Diffusion Models (2306.09004v1)

Published 15 Jun 2023 in eess.IV and cs.CV

Abstract: A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-expert prediction using diffusion models. Our method leverages the diffusion-based approach to incorporate information from multiple annotations and fuse it into a unified segmentation map that reflects the consensus of multiple experts. We evaluate the performance of our method on several datasets of medical segmentation annotated by multiple experts and compare it with state-of-the-art methods. Our results demonstrate the effectiveness and robustness of the proposed method. Our code is publicly available at https://github.com/tomeramit/Annotator-Consensus-Prediction.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com