Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Multimedia Event Extraction With Generated Images and Captions (2306.08966v2)

Published 15 Jun 2023 in cs.MM and cs.CV

Abstract: Contemporary news reporting increasingly features multimedia content, motivating research on multimedia event extraction. However, the task lacks annotated multimodal training data and artificially generated training data suffer from distribution shift from real-world data. In this paper, we propose Cross-modality Augmented Multimedia Event Learning (CAMEL), which successfully utilizes artificially generated multimodal training data and achieves state-of-the-art performance. We start with two labeled unimodal datasets in text and image respectively, and generate the missing modality using off-the-shelf image generators like Stable Diffusion and image captioners like BLIP. After that, we train the network on the resultant multimodal datasets. In order to learn robust features that are effective across domains, we devise an iterative and gradual training strategy. Substantial experiments show that CAMEL surpasses state-of-the-art (SOTA) baselines on the M2E2 benchmark. On multimedia events in particular, we outperform the prior SOTA by 4.2% F1 on event mention identification and by 9.8% F1 on argument identification, which indicates that CAMEL learns synergistic representations from the two modalities. Our work demonstrates a recipe to unleash the power of synthetic training data in structured prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zilin Du (11 papers)
  2. Yunxin Li (29 papers)
  3. Xu Guo (85 papers)
  4. Yidan Sun (8 papers)
  5. Boyang Li (106 papers)
Citations (7)