Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vectorization of the density matrix and quantum simulation of the von Neumann equation of time-dependent Hamiltonians (2306.08775v4)

Published 14 Jun 2023 in quant-ph, math-ph, and math.MP

Abstract: Based oh the properties of Lie algebras, in this work we develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations. We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix and the Hamiltonian superoperator takes the form $I\otimes H-H\top \otimes I$ where $I$ is the identity matrix and $H$ is the standard Hamiltonian. It is proven that this particular form belongs to a wider class of ways of linearizing the von Neumann equation that can be categorized by the algebra from which they originated. Particular attention is payed to Hermitian algebras that yield real density matrix coefficients substantially simplifying the quantum tomography of the state vector. Based on this ideas, a quantum algorithm to simulate the dynamics of the density matrix is proposed. It is shown that this method, along with the unique properties of the algebra formed by Pauli strings allows to avoid the use of Trotterization hence considerably reducing the circuit depth. Even though we have used the special case of the algebra formed by the Pauli strings, the algorithm can be readily adapted to other algebras. The algorithm is demonstrated for two toy Hamiltonians using the IBM noisy quantum circuit simulator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. P. Feynman, International Journal of Theoretical Physics 21 (1982).
  2. S. Lloyd, Science 273, 1073 (1996).
  3. M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,”  (2002).
  4. D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).
  5. D. A. Lidar and O. Biham, Phys. Rev. E 56, 3661 (1997).
  6. C. Zalka, Fortschritte der Physik 46, 877 (1998).
  7. A. Marzuoli and M. Rasetti, Physics Letters A 306, 79 (2002).
  8. H. F. Trotter, Pacific Journal of Mathematics 8 (1958).
  9. M. Suzuki, Physics Letters A 165, 387 (1992).
  10. R. D. Somma, Journal of Mathematical Physics 57, 062202 (2016), https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.4952761/14934873/062202_1_online.pdf .
  11. K. Kraus, Annals of Physics 64, 311 (1971).
  12. T. F. Havel, Journal of Mathematical Physics 44, 534 (2003), https://pubs.aip.org/aip/jmp/article-pdf/44/2/534/12224518/534_1_online.pdf .
  13. N. Ramusat and V. Savona, Quantum 5, 399 (2021).
  14. IBM, IBM Quantum.
  15. A. Kunold, “Quantum-von-neumann,” GitHub.
  16. N. Khaneja and S. J. Glaser, Chemical Physics 267, 11 (2001).
  17. G. Vidal and C. M. Dawson, Phys. Rev. A 69, 010301 (2004).
  18. B. Drury and P. Love, Journal of Physics A: Mathematical and Theoretical 41, 395305 (2008).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets