ICET Online Accuracy Characterization for Geometry-Based Laser Scan Matching (2306.08690v1)
Abstract: Distribution-to-Distribution (D2D) point cloud registration algorithms are fast, interpretable, and perform well in unstructured environments. Unfortunately, existing strategies for predicting solution error for these methods are overly optimistic, particularly in regions containing large or extended physical objects. In this paper we introduce the Iterative Closest Ellipsoidal Transform (ICET), a novel 3D LIDAR scan-matching algorithm that re-envisions NDT in order to provide robust accuracy prediction from first principles. Like NDT, ICET subdivides a LIDAR scan into voxels in order to analyze complex scenes by considering many smaller local point distributions, however, ICET assesses the voxel distribution to distinguish random noise from deterministic structure. ICET then uses a weighted least-squares formulation to incorporate this noise/structure distinction into computing a localization solution and predicting the solution-error covariance. In order to demonstrate the reasonableness of our accuracy predictions, we verify 3D ICET in three LIDAR tests involving real-world automotive data, high-fidelity simulated trajectories, and simulated corner-case scenes. For each test, ICET consistently performs scan matching with sub-centimeter accuracy. This level of accuracy, combined with the fact that the algorithm is fully interpretable, make it well suited for safety-critical transportation applications. Code is available at https://github.com/mcdermatt/ICET
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleFast and Robust Registration of Partially Overlapping Point Clouds Fast and robust registration of partially overlapping point clouds.\BBCQ \APACjournalVolNumPagesIEEE Robotics and Automation Letters1-8. {APACrefDOI} 10.1109/LRA.2021.3137888 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA method for registration of 3-D shapes A method for registration of 3-d shapes.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence142239-256. {APACrefDOI} 10.1109/34.121791 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleRobust GPS-Vision Localization via Integrity-Driven Landmark Attention Robust gps-vision localization via integrity-driven landmark attention.\BBCQ \APACjournalVolNumPagesNAVIGATION: Journal of the Institute of Navigation691. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleResolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization.\BBCQ \APACjournalVolNumPagesOptics letters3961705–1708. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay200311. \BBOQ\APACrefatitleThe Normal Distributions Transform: A New Approach to Laser Scan Matching The normal distributions transform: A new approach to laser scan matching.\BBCQ \BIn \APACrefbtitleIEEE International Conference on Intelligent Robots and Systems Ieee international conference on intelligent robots and systems (\BVOL 3, \BPG 2743 - 2748 vol.3). {APACrefDOI} 10.1109/IROS.2003.1249285 \PrintBackRefs\CurrentBib
- \APACinsertmetastarcensi{APACrefauthors}Censi, A. \APACrefYearMonthDay2007. \BBOQ\APACrefatitleAn accurate closed-form estimate of ICP’s covariance An accurate closed-form estimate of icp’s covariance.\BBCQ \BIn \APACrefbtitleProceedings 2007 IEEE international conference on robotics and automation Proceedings 2007 ieee international conference on robotics and automation (\BPGS 3167–3172). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1991. \BBOQ\APACrefatitleObject modeling by registration of multiple range images Object modeling by registration of multiple range images.\BBCQ \BIn \APACrefbtitleProceedings. 1991 IEEE International Conference on Robotics and Automation Proceedings. 1991 ieee international conference on robotics and automation (\BPG 2724-2729 vol.3). {APACrefDOI} 10.1109/ROBOT.1991.132043 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleUnsupervised Geometry-Aware Deep LiDAR Odometry Unsupervised geometry-aware deep lidar odometry.\BBCQ \BIn \APACrefbtitle2020 IEEE International Conference on Robotics and Automation (ICRA) 2020 ieee international conference on robotics and automation (icra) (\BPG 2145-2152). {APACrefDOI} 10.1109/ICRA40945.2020.9197366 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePixSet: An opportunity for 3D computer vision to go beyond point clouds with a full-waveform LiDAR dataset Pixset: An opportunity for 3d computer vision to go beyond point clouds with a full-waveform lidar dataset.\BBCQ \BIn \APACrefbtitle2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021 ieee international intelligent transportation systems conference (itsc) (\BPGS 2987–2993). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleCARLA: An Open Urban Driving Simulator CARLA: An open urban driving simulator.\BBCQ \BIn \APACrefbtitleProceedings of the 1st Annual Conference on Robot Learning Proceedings of the 1st annual conference on robot learning (\BPGS 1–16). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleGeneric NDT mapping in dynamic environments and its application for lifelong SLAM Generic ndt mapping in dynamic environments and its application for lifelong slam.\BBCQ \APACjournalVolNumPagesRobotics and Autonomous Systems. {APACrefDOI} https://doi.org/10.1016/j.robot.2014.08.008 \PrintBackRefs\CurrentBib
- \APACinsertmetastarenge1994global{APACrefauthors}Enge, P\BPBIK. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleThe global positioning system: Signals, measurements, and performance The global positioning system: Signals, measurements, and performance.\BBCQ \APACjournalVolNumPagesInternational Journal of Wireless Information Networks1283–105. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStatic calibration and analysis of the Velodyne HDL-64E S2 for high accuracy mobile scanning Static calibration and analysis of the velodyne hdl-64e s2 for high accuracy mobile scanning.\BBCQ \APACjournalVolNumPagesRemote sensing261610–1624. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA New Point-Cloud-Based LiDAR/IMU Localization Method with Uncertainty Evaluation A new point-cloud-based lidar/imu localization method with uncertainty evaluation.\BBCQ \BIn \APACrefbtitleProceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021) Proceedings of the 34th international technical meeting of the satellite division of the institute of navigation (ion gnss+ 2021) (\BPGS 636–651). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleLidar data association risk reduction, using tight integration with INS Lidar data association risk reduction, using tight integration with ins.\BBCQ \BIn \APACrefbtitleProceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018) Proceedings of the 31st international technical meeting of the satellite division of the institute of navigation (ion gnss+ 2018) (\BPGS 2467–2483). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleProbabilistic normal distributions transform representation for accurate 3D point cloud registration Probabilistic normal distributions transform representation for accurate 3d point cloud registration.\BBCQ \BIn \APACrefbtitle2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017 ieee/rsj international conference on intelligent robots and systems (iros) (\BPGS 3333–3338). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleUnscented filtering and nonlinear estimation Unscented filtering and nonlinear estimation.\BBCQ \APACjournalVolNumPagesProceedings of the IEEE923401–422. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201906. \BBOQ\APACrefatitleLO-Net: Deep Real-Time Lidar Odometry Lo-net: Deep real-time lidar odometry.\BBCQ \BIn \APACrefbtitle2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019 ieee/cvf conference on computer vision and pattern recognition (cvpr) (\BPG 8465-8474). {APACrefDOI} 10.1109/CVPR.2019.00867 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDMLO: Deep Matching LiDAR Odometry Dmlo: Deep matching lidar odometry.\BBCQ \BIn \APACrefbtitle2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020 ieee/rsj international conference on intelligent robots and systems (iros) (\BPG 6010-6017). {APACrefDOI} 10.1109/IROS45743.2020.9341206 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022\BCnt1. \BBOQ\APACrefatitleEnhanced Laser-Scan Matching with Online Error Estimation for Highway and Tunnel Driving Enhanced laser-scan matching with online error estimation for highway and tunnel driving.\BBCQ \BIn \APACrefbtitleProceedings of the 2022 International Technical Meeting of The Institute of Navigation Proceedings of the 2022 international technical meeting of the institute of navigation (\BPG 643-654). {APACrefDOI} https://doi.org/10.33012/2022.18249 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022\BCnt2. \BBOQ\APACrefatitleMitigating Shadows in Lidar Scan Matching using Spherical Voxels Mitigating shadows in lidar scan matching using spherical voxels.\BBCQ \APACjournalVolNumPagesIEEE Robotics and Automation Letters7412363–12370. {APACrefDOI} https://doi.org/10.1109/LRA.2022.3216987 \PrintBackRefs\CurrentBib
- \APACinsertmetastarnist2006sematech{APACrefauthors}NIST. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleSEMATECH e-handbook of statistical methods Sematech e-handbook of statistical methods.\BBCQ \APACjournalVolNumPagesUS Department of Commerce. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleI-LOAM: Intensity Enhanced LiDAR Odometry and Mapping I-loam: Intensity enhanced lidar odometry and mapping.\BBCQ \BIn \APACrefbtitle2020 17th International Conference on Ubiquitous Robots (UR) 2020 17th international conference on ubiquitous robots (ur) (\BPG 455-458). {APACrefDOI} 10.1109/UR49135.2020.9144987 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleNonlinear Kalman filters explained: A tutorial on moment computations and sigma point methods Nonlinear kalman filters explained: A tutorial on moment computations and sigma point methods.\BBCQ \APACjournalVolNumPagesJournal of Advances in Information Fusion11147–70. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleGeneralized-icp. Generalized-icp.\BBCQ \BIn \APACrefbtitleRobotics: science and systems Robotics: science and systems (\BVOL 2, \BPG 435). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1989. \BBOQ\APACrefatitleOcclusion and the solution to the aperture problem for motion Occlusion and the solution to the aperture problem for motion.\BBCQ \APACjournalVolNumPagesVision research295619–626. \PrintBackRefs\CurrentBib
- \APACinsertmetastarSimon{APACrefauthors}Simon, D. \APACrefYear2006. \APACrefbtitleOptimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches Optimal state estimation: Kalman, h infinity, and nonlinear approaches. \APACaddressPublisherWiley & Sons. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleFast and accurate scan registration through minimization of the distance between compact 3D NDT representations Fast and accurate scan registration through minimization of the distance between compact 3d ndt representations.\BBCQ \APACjournalVolNumPagesThe International Journal of Robotics Research31121377–1393. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleA 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping A 3-d scan matching using improved 3-d normal distributions transform for mobile robotic mapping.\BBCQ \BIn \APACrefbtitle2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2006 ieee/rsj international conference on intelligent robots and systems (\BPGS 3068–3073). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleX-ICP: Localizability-Aware LiDAR Registration for Robust Localization in Extreme Environments X-icp: Localizability-aware lidar registration for robust localization in extreme environments.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2211.16335. \PrintBackRefs\CurrentBib
- \APACinsertmetastarvelodyne{APACrefauthors}Velodyne LiDAR, I. \APACrefYear2019. \APACrefbtitleVLP-16 User’s Manual Vlp-16 user’s manual. {APACrefURL} https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitlePerformance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong Performance analysis of ndt-based graph slam for autonomous vehicle in diverse typical driving scenarios of hong kong.\BBCQ \APACjournalVolNumPagesSensors18113928. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleSqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud.\BBCQ \BIn \APACrefbtitle2018 IEEE International Conference on Robotics and Automation (ICRA) 2018 ieee international conference on robotics and automation (icra) (\BPG 1887-1893). {APACrefDOI} 10.1109/ICRA.2018.8462926 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleLOAM: Lidar Odometry and Mapping in Real-time. Loam: Lidar odometry and mapping in real-time.\BBCQ \BIn \APACrefbtitleRobotics: Science and Systems Robotics: Science and systems (\BVOL 2). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleEstimating the Localizability in Tunnel-like Environments using LiDAR and UWB Estimating the localizability in tunnel-like environments using lidar and uwb.\BBCQ \BIn \APACrefbtitle2019 International Conference on Robotics and Automation (ICRA) 2019 international conference on robotics and automation (icra) (\BPG 4903-4908). {APACrefDOI} 10.1109/ICRA.2019.8794167 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleIntegrity of Visual Navigation—Developments, Challenges, and Prospects Integrity of visual navigation—developments, challenges, and prospects.\BBCQ \APACjournalVolNumPagesNAVIGATION: Journal of the Institute of Navigation692. \PrintBackRefs\CurrentBib