Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Szlenk and $w^\ast$-dentability indices of C$^\ast$-algebras (2306.08515v3)

Published 14 Jun 2023 in math.FA and math.OA

Abstract: Let $\mathcal A$ be a infinite dimensional C*-algebra and $1<p<\infty$. We compute the Szlenk index of $\mathcal A$ and $L_p(\mathcal A)$, and show that $Sz(\mathcal A)=\Gamma'(i(\mathcal A))$ and $Dz(\mathcal A)=Sz(L_p(\mathcal A))=\omega Sz(\mathcal A)=\omega\Gamma'(i(\mathcal A))$, where $i(\mathcal A)$ is the noncommutative Cantor-Bendixson index, $\Gamma'(\xi)$ is the minimum ordinal number which is greater than $\xi$ of the form $\omega\zeta$ for some $\zeta$ and we agree that $\Gamma'(\infty)=\infty$ and $\omega\cdot\infty=\infty$. As a application, we compute the Szlenk index [respectively, $w\ast$-dentability index] of a C*-tensor product $\mathcal A\otimes_\beta\mathcal B$ of non-zero C*-algebras $\mathcal A$ and $\mathcal B$ in terms of $Sz(\mathcal A)$ and $Sz(\mathcal B)$ [respectively, $Dz(\mathcal A)$ and $Dz(\mathcal B)$]. When $\mathcal A$ is a separable C*-algebra, we show that there exists $a\in \mathcal A_h$ such that $Sz(\mathcal A)=Sz(C\ast(a))$ and $Dz(\mathcal A)=Dz(C\ast(a))$, where $C\ast(a)$ is the C*-subalgebra of $\mathcal A$ generated by $a$.

Summary

We haven't generated a summary for this paper yet.