Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The MacWilliams Identity for the Hermitian Rank Metric (2306.08411v3)

Published 14 Jun 2023 in cs.IT and math.IT

Abstract: Error-correcting codes have an important role in data storage and transmission and in cryptography, particularly in the post-quantum era. Hermitian matrices over finite fields and equipped with the rank metric have the potential to offer enhanced security with greater efficiency in encryption and decryption. One crucial tool for evaluating the error-correcting capabilities of a code is its weight distribution and the MacWilliams Theorem has long been used to identify this structure of new codes from their known duals. Earlier papers have developed the MacWilliams Theorem for certain classes of matrices in the form of a functional transformation, developed using $q$-algebra, character theory and Generalised Krawtchouk polynomials, which is easy to apply and also allows for moments of the weight distribution to be found. In this paper, recent work by Kai-Uwe Schmidt on the properties of codes based on Hermitian matrices such as bounds on their size and the eigenvalues of their association scheme is extended by introducing a negative-$q$ algebra to establish a MacWilliams Theorem in this form together with some of its associated moments. The similarities in this approach and in the paper for the Skew-Rank metric by Friedlander et al. have been emphasised to facilitate future generalisation to any translation scheme.

Summary

We haven't generated a summary for this paper yet.