Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing First Arrival Position Channels: Noise Distribution and Capacity Analysis (2306.08353v3)

Published 14 Jun 2023 in cs.IT, cs.ET, and math.IT

Abstract: This paper introduces a novel mathematical model for Molecular Communication (MC) systems, utilizing First Arrival Position (FAP) as a fundamental mode of information transmission. We address two critical challenges: the characterization of FAP density and the establishment of capacity bounds for channels with vertically-drifted FAP. Our method relate macroscopic Partial Differential Equation (PDE) models to microscopic Stochastic Differential Equation (SDE) models, resulting in a precise expression that links FAP density with elliptic-type Green's function. This formula is distinguished by its wide applicability across any spatial dimensions, any drift directions, and various receiver geometries. We demonstrate the practicality of our model through case studies: 2D and 3D planar receivers. The accuracy of our formula is also validated by particle-based simulations. Advancing further, the explicit FAP density forms enable us to establish closed-form upper and lower bounds for the capacity of vertically-drifted FAP channels under a second-moment constraint, significantly advancing the understanding of FAP channels in MC systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Y.-C. Lee, J.-M. Wu, and M.-H. Hsieh, “A unified framework for calculating first arrival position density in molecular communication,” arXiv preprint arXiv:2201.04476v3, 2022.
  2. Y.-F. Lo, Y.-C. Lee, and M.-H. Hsieh, “Capacity bounds for vertically-drifted first arrival position channels under a covariance constraint,” arXiv preprint arXiv:2305.02706v4, 2023.
  3. W. Guo, C. Mias, N. Farsad, and J.-L. Wu, “Molecular versus electromagnetic wave propagation loss in macro-scale environments,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 1, pp. 18–25, 2015.
  4. I. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A new communication paradigm,” Computer Networks, vol. 52, no. 12, pp. 2260–2279, 2008.
  5. M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for molecular communication in nanonetworks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp. 602–611, 2010.
  6. N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular communication,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1887–1919, 2016.
  7. M. Pierobon and I. F. Akyildiz, “Capacity of a diffusion-based molecular communication system with channel memory and molecular noise,” IEEE Transactions on Information Theory, vol. 59, no. 2, pp. 942–954, 2012.
  8. S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication using Brownian motion with drift,” IEEE Transactions on NanoBioscience, vol. 11, no. 2, pp. 89–99, 2012.
  9. M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, “A design of a molecular communication system for nanomachines using molecular motors,” in Proc. 4th Annu. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PERCOMW), Pisa, Italy, Mar. 2006, pp. 554–559.
  10. D. Bi, Y. Deng, M. Pierobon, and A. Nallanathan, “Chemical reactions-based microfluidic transmitter and receiver design for molecular communication,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5590–5605, 2020.
  11. M. Ş. Kuran, H. B. Yilmaz, I. Demirkol, N. Farsad, and A. Goldsmith, “A survey on modulation techniques in molecular communication via diffusion,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 7–28, 2020.
  12. V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober, “Channel modeling for diffusive molecular communication—a tutorial review,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1256–1301, 2019.
  13. A. Noel, Y. Deng, D. Makrakis, and A. Hafid, “Active versus passive: receiver model transforms for diffusive molecular communication,” in 2016 IEEE Global Communications Conference (GLOBECOM), Washington, D.C., USA, Dec. 2016, pp. 1–6.
  14. H. B. Yilmaz, A. C. Heren, T. Tuğcu, and C.-B. Chae, “Three-dimensional channel characteristics for molecular communications with an absorbing receiver,” IEEE Communications Letters, vol. 18, no. 6, pp. 929–932, 2014.
  15. B.-H. Koo, C. Lee, H. B. Yilmaz, N. Farsad, A. Eckford, and C.-B. Chae, “Molecular MIMO: From theory to prototype,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 600–614, 2016.
  16. M. C. Gursoy, E. Basar, A. E. Pusane, and T. Tuğcu, “Pulse position-based spatial modulation for molecular communications,” IEEE Communications Letters, vol. 23, no. 4, pp. 596–599, 2019.
  17. M. C. Gursoy, A. Celik, E. Basar, A. E. Pusane, and T. Tuğcu, “Molecular index modulation with space-time equalization,” IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 702–705, 2020.
  18. K. V. Srinivas, A. W. Eckford, and R. S. Adve, “Molecular communication in fluid media: The additive inverse Gaussian noise channel,” IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4678–4692, 2012.
  19. Y.-C. Lee, C.-C. Chen, P.-C. Yeh, and C.-H. Lee, “Distribution of first arrival position in molecular communication,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Barcelona, Spain, July 2016, pp. 1033–1037.
  20. N. Pandey, R. K. Mallik, and B. Lall, “Molecular communication: The first arrival position channel,” IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 508–511, 2018.
  21. B. C. Akdeniz, N. A. Turgut, H. B. Yilmaz, C.-B. Chae, T. Tuğcu, and A. E. Pusane, “Molecular signal modeling of a partially counting absorbing spherical receiver,” IEEE Transactions on Communications, vol. 66, no. 12, pp. 6237–6246, 2018.
  22. N. Farsad, W. Guo, C.-B. Chae, and A. Eckford, “Stable distributions as noise models for molecular communication,” in Proc. IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.
  23. M. H. Stone, “On one-parameter unitary groups in Hilbert space,” Annals of Mathematics, pp. 643–648, 1932.
  24. Y.-C. Lee and M.-H. Hsieh, “On the capacity of zero-drift first arrival position channels in diffusive molecular communication,” to appear in IEEE International Conference on Communications (ICC), 2024.
  25. H. Fallahgoul, S. Hashemiparast, F. J. Fabozzi, and Y. S. Kim, “Multivariate stable distributions and generating densities,” Applied Mathematics Letters, vol. 26, no. 3, pp. 324–329, 2013.
  26. N. V. Sabu, N. Varshney, and A. K. Gupta, “3-D diffusive molecular communication with two fully-absorbing receivers: Hitting probability and performance analysis,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 6, no. 3, pp. 244–249, 2020.
  27. J. W. Kwak, H. B. Yilmaz, N. Farsad, C.-B. Chae, and A. J. Goldsmith, “Two-way molecular communications,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3550–3563, 2020.
  28. L. Brand, S. Lotter, V. Jamali, R. Schober, and M. Schäfer, “Area rate efficiency in multi-link molecular communications,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 9, no. 4, pp. 391–407, 2023.
  29. F. Vakilipoor, A. N. Ansari, and M. Magarini, “Heuristic barycenter modeling of fully absorbing receivers in diffusive molecular communication channels,” IEEE Transactions on Communications, vol. 72, no. 1, pp. 133–145, 2024.
  30. R. E. Gaunt, “A simple proof of the characteristic function of student’s t𝑡titalic_t-distribution,” Communications in Statistics-Theory and Methods, vol. 50, no. 14, pp. 3380–3383, 2021.
  31. H.-Y. Lee, H.-J. Park, and H.-M. Kim, “A clarification of the Cauchy distribution,” Communications for Statistical Applications and Methods, vol. 21, no. 2, pp. 183–191, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com