Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bergman projection on Lebesgue space induced by doubling weight (2306.08255v1)

Published 14 Jun 2023 in math.CV and math.FA

Abstract: Let $\omega$ and $\nu$ be radial weights on the unit disc of the complex plane, and denote $\sigma=\omega{p'}\nu{-\frac{p'}p}$ and $\omega_x =\int_01 sx \omega(s)\,ds$ for all $1\le x<\infty$. Consider the one-weight inequality \begin{equation}\label{ab1} |P_\omega(f)|{Lp\nu}\le C|f|{Lp\nu},\quad 1<p<\infty,\tag{\dag} \end{equation} for the Bergman projection $P_\omega$ induced by $\omega$. It is shown that the moment condition $$ D_p(\omega,\nu)=\sup_{n\in \mathbb{N}\cup\{0\}}\frac{\left(\nu_{np+1}\right)^\frac1p\left(\sigma_{np'+1}\right)^\frac1{p'}}{\omega_{2n+1}}<\infty $$ is necessary for \eqref{ab1} to hold. Further, $D_p(\omega,\nu)<\infty$ is also sufficient for \eqref{ab1} if $\nu$ admits the doubling properties $\sup_{0\le r\<1}\frac{\int_r^1 \omega(s)s\,ds}{\int_{\frac{1+r}{2}}^1 \omega(s)s\,ds}<\infty$ and $\sup_{0\le r\<1}\frac{\int_r^1 \omega(s)s\,ds}{\int_r^{1-\frac{1-r}{K}} \omega(s)s\,ds}<\infty$ for some $K\>1$. In addition, an analogous result for the one weight inequality $ |P_\omega(f)|{Dp{\nu,k}}\le C|f|{Lp\nu}, $ where $$ \Vert f \Vert_{Dp_{\nu, k}}p =\sum\limits_{j=0}{k-1}| f{(j)}(0)|p+ \int_{\mathbb{D}} \vert f{(k)}(z)\vertp (1-|z| ){kp}\nu(z)\,dA(z)<\infty, \quad k\in \mathbb{N}, $$ is established. The inequality \eqref{ab1} is further studied by using the necessary condition $D_p(\omega,\nu)<\infty$ in the case of the exponential type weights $\nu(r)=\exp \left(-\frac{\alpha}{(1-rl){\beta}} \right)$ and $\omega(r)= \exp \left(-\frac{\widetilde{\alpha}}{(1-r{\widetilde{l}}){\widetilde{\beta}}} \right)$, where $0<\alpha, \, \widetilde{\alpha}, \, l, \, \widetilde{l}<\infty$ and $0<\beta , \, \widetilde{\beta}\le 1$.

Summary

We haven't generated a summary for this paper yet.