Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent mutations in the ancestries of alleles under selection (2306.08142v4)

Published 13 Jun 2023 in math.PR and q-bio.PE

Abstract: We consider a single genetic locus with two alleles $A_1$ and $A_2$ in a large haploid population. The locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright-Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene genealogy and the latent mutations of a sample with known allele counts, when the count $n_1$ of allele $A_1$ is fixed, and when either or both the sample size $n$ and the selection strength $\lvert\alpha\rvert$ tend to infinity. Our study extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual sense ($\alpha\to -\infty$ or $\alpha\to +\infty$), the number of latent mutations of the $n_1$ copies of allele $A_1$ follows the same distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also demonstrate robustness of our asymptotic results against changing population sizes, when one of $\lvert\alpha\rvert$ or $n$ is large.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Handbook of Mathematical Functions. Dover, New York.
  2. Poisson process approximations for the Ewens sampling formula. The Annals of Applied Probability 2, 519 – 535. doi:10.1214/aoap/1177005647.
  3. Ancestral processes with selection: branching and Moran models. Banach Center Publications 80, 33–52. doi:10.4064/bc80-0-2.
  4. The effect of selection on genealogies. Genetics 166, 1115–1131. doi:10.1093/genetics/166.2.1115.
  5. Coalescence in a random background. The Annals of Applied Probability 14, 754 – 785. doi:10.1214/105051604000000099.
  6. A new model for evolution in a spatial continuum. Electronic Journal of Probability 15, 162–216. doi:10.1214/EJP.v15-741.
  7. Convergence of probability measures. John Wiley & Sons.
  8. From drift to draft: How much do beneficial mutations actually contribute to predictions of Ohta’s slightly deleterious model of molecular evolution? Genetics 214, 1005–1018. doi:10.1534/genetics.119.302869.
  9. The ubiquitous Ewens sampling formula. Statistical Science 31, 1–19. doi:10.1214/15-STS529.
  10. A numerical method for calculating moments of coalescent times in finite populations with selection. Journal of Mathematical Biology 27, 355–368. doi:10.1007/BF00275818.
  11. Large deviations techniques and applications. Springer.
  12. Dual processes in population genetics, in: Tautu, P. (Ed.), Stochastic Spatial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 94–105. doi:10.1007/BFb0076240.
  13. Conditional brownian motion and the boundary limits of harmonic functions. Bulletin de la Société mathématique de France 86, 431–458. URL: http://www.numdam.org/article/BSMF_1957__85__431_0.pdf.
  14. Classical Potential Theory and Its Probabilistic Counterpart. Springer-Verlag Berlin, Heidelberg. doi:10.1007/978-3-642-56573-1.
  15. The integrated square-root process. Centre for Actuarial Studies, Department of Economics, University of Melbourne.
  16. Genealogies in expanding populations. Ann. Appl. Probab. 26, 3456–3490. doi:10.1214/16-AAP1181.
  17. Some Mathematical Models from Population Genetics: École D’Été de Probabilités de Saint-Flour XXXIX-2009. Springer Berlin, Heidelberg. doi:10.1007/978-3-642-16632-7.
  18. An approximate sampling formula under genetic hitchhiking. The Annals of Applied Probability 16, 685–729. doi:10.1214/105051606000000114.
  19. Looking forwards and backwards: dynamics and genealogies of locally regulated populations. arXiv preprint arXiv:2305.14488 .
  20. Fleming–viot processes in population genetics. SIAM Journal on Control and Optimization 31, 345–386.
  21. Markov processes: characterization and convergence. John Wiley & Sons.
  22. Non-equilibrium theory of the allele frequency spectrum. Theoretical population biology 71, 109–119.
  23. The sampling theory of selectively neutral alleles. Theoretical Population Biology 3, 87–112. doi:10.1016/0040-5809(72)90035-4.
  24. Mathematical Population Genetics, Volume I: Theoretical Foundations. Springer-Verlag, Berlin.
  25. The distribution of fitness effects of new mutations. Nature Reviews Genetics 8, 610–618. doi:10.1038/nrg2146.
  26. Stochastic PDEs on graphs as scaling limits of discrete interacting systems. Bernoulli 27, 1899–1941. doi:10.3150/20-bej1296.
  27. Perfect simulation from population genetic models with selection. Theoretical Population Biology 59, 263–279. doi:https://doi.org/10.1006/tpbi.2001.1514.
  28. The common ancestor at a nonneutral locus. Journal of Applied Probability 39, 38–54. doi:10.1239/jap/1019737986.
  29. The Genetical Theory of Natural Selection. Clarendon, Oxford.
  30. Gene surfing in expanding populations. Theoretical population biology 73, 158–170.
  31. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. PLoS Genetics 12, e1006489. doi:10.1371/journal.pgen.1006489.
  32. A branching process allowing immigration. Journal of the Royal Statistical Society. Series B (Methodological) 27, 138–143. URL: http://www.jstor.org/stable/2984491.
  33. The structured coalescent, in: Donnelly, P., Tavaré, S. (Eds.), Progress in Population Genetics and Human Evolution (IMA Volumes in Mathematics and its Applications, vol. 87. Springer-Verlag, New York, pp. 231–255.
  34. Identifying rare variants inconsistent with identity-by-descent in population-scale whole-genome sequencing data. Methods in Ecology and Evolution 13, 2429–2442. doi:10.1111/2041-210X.13991.
  35. Robustness of the Ewens sampling formula. Journal of Applied Probability 32, 609–622. doi:10.2307/3215116.
  36. The distribution of rare alleles. Journal of Mathematical Biology 33, 602–618. doi:10.1007/BF00298645.
  37. The coalescent process in models with selection. Genetics 120, 819–829. doi:10.1093/genetics/120.3.819.
  38. Brownian motion and stochastic calculus. volume 113. Springer Science & Business Media.
  39. On some stochastic models in genetics, in: Gurland, J. (Ed.), Stochastic Models in Medicine and Biology. The University of Wisconsin Press, Madison, pp. 245–271.
  40. Finite Markov Chains. D Van Nostrand Company, New York.
  41. Stochastic processes and population growth. Journal of the Royal Statistical Society. Series B (Methodological) 11, 230–282. URL: http://www.jstor.org/stable/2984078.
  42. Ancestral processes with selection. Theoretical Population Biology 51, 210–237. doi:10.1006/tpbi.1997.1299.
  43. Revisiting an old riddle: What determines genetic diversity levels within species? PLOS Biology 10, 1–9. doi:10.1371/journal.pbio.1001388.
  44. Growth properties of the infinite-parent spatial lambda-fleming viot process. arXiv preprint arXiv:2205.03937 .
  45. Integration by parts and time reversal for diffusion processes. The Annals of Probability , 208–238.
  46. Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71. doi:10.1017/S0305004100033193.
  47. Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.
  48. Stochastic pde’s arising from the long range contact and long range voter processes. Probability theory and related fields 102, 519–545.
  49. Models and approximations for random genetic drift. Theoretical Population Biology 37, 192–212. doi:10.1016/0040-5809(90)90035-T.
  50. The genealogy of samples in models with selection. Genetics 145, 519–534. doi:10.1093/genetics/145.2.519.
  51. The coalescent and the genealogical process in geographically structured population. Journal of Mathematical Biology 29, 59–75. doi:10.1007/BF00173909.
  52. A mutation rate model at the basepair resolution identifies the mutagenic effect of Polymerase III transcription. bioRxiv doi:10.1101/2022.08.20.504670. doi: 10.1101/2022.08.20.504670.
  53. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science 373, 1030–1035. doi:10.1126/science.aba7408.
  54. Stepping stone models in population genetics and population dynamics, in: Albeverio, S., Blanchard, P., Hazewinkel, M., Streit, L. (Eds.), Stochastic processes in physics and engineering. Springer, pp. 345–355.
  55. Most recent common ancestor probability distributions in gene genealogies under selection. Theoretical Population Biology 58, 291–305. doi:10.1006/tpbi.2000.1488.
  56. Simulation of selected genealogies. Theoretical Population Biology 57, 35–49. doi:10.1006/tpbi.1999.1438.
  57. Confluent Hypergeometric Functions. Cambridge University Press, Cambridge.
  58. Ancestral inference in population genetics models with selection (with Discussion). Australian & New Zealand Journal of Statistics 45, 395–430. doi:10.1111/1467-842X.00295.
  59. The coalescent in two partially isolated diffusion populations. Genetics Research 52, 213–222. doi:10.1017/S0016672300027683.
  60. The magical Ewens sampling formula. Bulletin of the London Mathematical Society 53, 1563–1582. doi:10.1112/blms.12537.
  61. The asymptotic expansion of a ratio of gamma functions. Pacific Journal of Mathematics 1, 133–142. doi:10.2140/pjm.1951.1.133.
  62. Probability density of the cir model. Available at SSRN 2508699 .
  63. Conditional gene genealogies under strong purifying selection. Molecular Biology and Evolution 25, 2615–2626. doi:10.1093/molbev/msn209.
  64. Recurrent mutation in the ancestry of a rare variant. Genetics, iyad049. doi:10.1093/genetics/iyad049.
  65. The sampling theory of selectively neutral alleles. Advances in Applied Probability 6, 463–488. doi:10.2307/1426228.
  66. Evolution in Mendelian populations. Genetics 16, 97–159. URL: https://www.genetics.org/content/16/2/97.
Citations (2)

Summary

We haven't generated a summary for this paper yet.