Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Accelerated Convergence of Nesterov's Momentum for Deep ReLU Neural Networks (2306.08109v2)

Published 13 Jun 2023 in cs.LG and math.OC

Abstract: Current state-of-the-art analyses on the convergence of gradient descent for training neural networks focus on characterizing properties of the loss landscape, such as the Polyak-Lojaciewicz (PL) condition and the restricted strong convexity. While gradient descent converges linearly under such conditions, it remains an open question whether Nesterov's momentum enjoys accelerated convergence under similar settings and assumptions. In this work, we consider a new class of objective functions, where only a subset of the parameters satisfies strong convexity, and show Nesterov's momentum achieves acceleration in theory for this objective class. We provide two realizations of the problem class, one of which is deep ReLU networks, which --to the best of our knowledge--constitutes this work the first that proves accelerated convergence rate for non-trivial neural network architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.