Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Polyp Segmentation from an Out-of-Distribution Perspective (2306.07792v1)

Published 13 Jun 2023 in eess.IV and cs.CV

Abstract: Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders -- self-supervised vision transformers trained on a reconstruction task -- to learn in-distribution representations; here, the distribution of healthy colon images. We then perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples. We generate per-pixel anomaly scores for each image by calculating the difference between the input and reconstructed images and use this signal for out-of-distribution (ie, polyp) segmentation. Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets. Our code is publicly available at https://github.com/GewelsJI/Polyp-OOD.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. M. M. Center, A. Jemal, R. A. Smith, and E. Ward, “Worldwide variations in colorectal cancer,” CA: a cancer journal for clinicians, vol. 59, no. 6, pp. 366–378, 2009.
  2. “Survival rates for colorectal cancer,” https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html, accessed: 2023-03-01.
  3. P. Brandao, E. Mazomenos, G. Ciuti, R. Caliò, F. Bianchi, A. Menciassi, P. Dario, A. Koulaouzidis, A. Arezzo, and D. Stoyanov, “Fully convolutional neural networks for polyp segmentation in colonoscopy,” in MICAD, vol. 10134, 2017, pp. 101–107.
  4. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, and H. D. Johansen, “Resunet++: An advanced architecture for medical image segmentation,” in IEEE ISM, 2019, pp. 225–2255.
  5. M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy,” Computers in biology and medicine, vol. 137, p. 104815, 2021.
  6. T. Mahmud, B. Paul, and S. A. Fattah, “Polypsegnet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images,” Computers in Biology and Medicine, vol. 128, p. 104119, 2021.
  7. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in MICCAI, 2020, pp. 263–273.
  8. J. G.-B. Puyal, K. K. Bhatia, P. Brandao, O. F. Ahmad, D. Toth, R. Kader, L. Lovat, P. Mountney, and D. Stoyanov, “Endoscopic polyp segmentation using a hybrid 2d/3d cnn,” in MICCAI.   Springer, 2020, pp. 295–305.
  9. G.-P. Ji, Y.-C. Chou, D.-P. Fan, G. Chen, H. Fu, D. Jha, and L. Shao, “Progressively normalized self-attention network for video polyp segmentation,” in MICCAI, 2021, pp. 142–152.
  10. G.-P. Ji, G. Xiao, Y.-C. Chou, D.-P. Fan, K. Zhao, G. Chen, and L. Van Gool, “Video polyp segmentation: A deep learning perspective,” Machine Intelligence Research, vol. 19, no. 6, pp. 531–549, 2022.
  11. H. Wu, G. Chen, Z. Wen, and J. Qin, “Collaborative and adversarial learning of focused and dispersive representations for semi-supervised polyp segmentation,” in ICCV, 2021, pp. 3489–3498.
  12. X. Li, J. Xu, Y. Zhang, R. Feng, R.-W. Zhao, T. Zhang, X. Lu, and S. Gao, “Tccnet: Temporally consistent context-free network for semi-supervised video polyp segmentation,” in IJCAI-22, 2022, pp. 1109–1115.
  13. X. Zhao, Z. Wu, S. Tan, D.-J. Fan, Z. Li, X. Wan, and G. Li, “Semi-supervised spatial temporal attention network for video polyp segmentation,” in MICCAI, 2022, pp. 456–466.
  14. R. Zhang, S. Liu, Y. Yu, and G. Li, “Self-supervised correction learning for semi-supervised biomedical image segmentation,” in MICCAI, 2021, pp. 134–144.
  15. M. Zhu, Z. Chen, and Y. Yuan, “Feddm: Federated weakly supervised segmentation via annotation calibration and gradient de-conflicting,” IEEE TMI, 2023.
  16. L. Ruiz and F. Martínez, “Weakly supervised polyp segmentation from an attention receptive field mechanism,” in EMBC, 2022, pp. 3745–3748.
  17. J. Dong, Y. Cong, G. Sun, and D. Hou, “Semantic-transferable weakly-supervised endoscopic lesions segmentation,” in ICCV, 2019, pp. 10 712–10 721.
  18. J. Dong, Y. Cong, G. Sun, Y. Yang, X. Xu, and Z. Ding, “Weakly-supervised cross-domain adaptation for endoscopic lesions segmentation,” IEEE TCSVT, vol. 31, no. 5, 2020.
  19. Y. Tian, F. Liu, G. Pang, Y. Chen, Y. Liu, J. W. Verjans, R. Singh, and G. Carneiro, “Self-supervised multi-class pre-training for unsupervised anomaly detection and segmentation in medical images,” arXiv preprint arXiv:2109.01303, 2021.
  20. Y. Tian, G. Pang, F. Liu, Y. Chen, S. H. Shin, J. W. Verjans, R. Singh, and G. Carneiro, “Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images,” in MICCAI, 2021, pp. 128–140.
  21. R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv preprint arXiv:1901.03407, 2019.
  22. T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar, “Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance,” arXiv preprint arXiv:1812.02765, 2018.
  23. Y. Tian, G. Pang, Y. Liu, C. Wang, Y. Chen, F. Liu, R. Singh, J. W. Verjans, and G. Carneiro, “Unsupervised anomaly detection in medical images with a memory-augmented multi-level cross-attentional masked autoencoder,” arXiv preprint arXiv:2203.11725, 2022.
  24. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in CVPR, 2022, pp. 16 000–16 009.
  25. A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16-16 words: Transformers for image recognition at scale,” in ICLR, 2021.
  26. D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in MMM, 2020, pp. 451–462.
  27. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” CMIG, vol. 43, pp. 99–111, 2015.
  28. J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012.
  29. J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” IJCARS, vol. 9, pp. 283–293, 2014.
  30. J. Han, Y. Ren, J. Ding, X. Pan, K. Yan, and G.-S. Xia, “Expanding low-density latent regions for open-set object detection,” in CVPR, 2022, pp. 9591–9600.
  31. N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE TMI, vol. 35, no. 2, pp. 630–644, 2015.
  32. P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” arXiv preprint arXiv:1807.02011, 2018.
  33. Y. Chen, Y. Tian, G. Pang, and G. Carneiro, “Deep one-class classification via interpolated gaussian descriptor,” in AAAI, 2022, pp. 383–392.
  34. J. Wyatt, A. Leach, S. M. Schmon, and C. G. Willcocks, “Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise,” in IEEE CVPR-W, 2022, pp. 650–656.
  35. M.-M. Cheng and D.-P. Fan, “Structure-measure: A new way to evaluate foreground maps,” IJCV, vol. 129, pp. 2622–2638, 2021.
  36. D.-P. Fan, G.-P. Ji, X. Qin, and M.-M. Cheng, “Cognitive vision inspired object segmentation metric and loss function,” SSCI Informationis, vol. 6, pp. 1475–1489, 2021.
  37. T. Li, H. Chang, S. Mishra, H. Zhang, D. Katabi, and D. Krishnan, “Mage: Masked generative encoder to unify representation learning and image synthesis,” in Conference on computer vision and pattern recognition, 2023, pp. 2142–2152.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ge-Peng Ji (29 papers)
  2. Jing Zhang (731 papers)
  3. Dylan Campbell (44 papers)
  4. Huan Xiong (42 papers)
  5. Nick Barnes (81 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.