Rethinking Polyp Segmentation from an Out-of-Distribution Perspective (2306.07792v1)
Abstract: Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders -- self-supervised vision transformers trained on a reconstruction task -- to learn in-distribution representations; here, the distribution of healthy colon images. We then perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples. We generate per-pixel anomaly scores for each image by calculating the difference between the input and reconstructed images and use this signal for out-of-distribution (ie, polyp) segmentation. Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets. Our code is publicly available at https://github.com/GewelsJI/Polyp-OOD.
- M. M. Center, A. Jemal, R. A. Smith, and E. Ward, “Worldwide variations in colorectal cancer,” CA: a cancer journal for clinicians, vol. 59, no. 6, pp. 366–378, 2009.
- “Survival rates for colorectal cancer,” https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html, accessed: 2023-03-01.
- P. Brandao, E. Mazomenos, G. Ciuti, R. Caliò, F. Bianchi, A. Menciassi, P. Dario, A. Koulaouzidis, A. Arezzo, and D. Stoyanov, “Fully convolutional neural networks for polyp segmentation in colonoscopy,” in MICAD, vol. 10134, 2017, pp. 101–107.
- D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, and H. D. Johansen, “Resunet++: An advanced architecture for medical image segmentation,” in IEEE ISM, 2019, pp. 225–2255.
- M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy,” Computers in biology and medicine, vol. 137, p. 104815, 2021.
- T. Mahmud, B. Paul, and S. A. Fattah, “Polypsegnet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images,” Computers in Biology and Medicine, vol. 128, p. 104119, 2021.
- D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in MICCAI, 2020, pp. 263–273.
- J. G.-B. Puyal, K. K. Bhatia, P. Brandao, O. F. Ahmad, D. Toth, R. Kader, L. Lovat, P. Mountney, and D. Stoyanov, “Endoscopic polyp segmentation using a hybrid 2d/3d cnn,” in MICCAI. Springer, 2020, pp. 295–305.
- G.-P. Ji, Y.-C. Chou, D.-P. Fan, G. Chen, H. Fu, D. Jha, and L. Shao, “Progressively normalized self-attention network for video polyp segmentation,” in MICCAI, 2021, pp. 142–152.
- G.-P. Ji, G. Xiao, Y.-C. Chou, D.-P. Fan, K. Zhao, G. Chen, and L. Van Gool, “Video polyp segmentation: A deep learning perspective,” Machine Intelligence Research, vol. 19, no. 6, pp. 531–549, 2022.
- H. Wu, G. Chen, Z. Wen, and J. Qin, “Collaborative and adversarial learning of focused and dispersive representations for semi-supervised polyp segmentation,” in ICCV, 2021, pp. 3489–3498.
- X. Li, J. Xu, Y. Zhang, R. Feng, R.-W. Zhao, T. Zhang, X. Lu, and S. Gao, “Tccnet: Temporally consistent context-free network for semi-supervised video polyp segmentation,” in IJCAI-22, 2022, pp. 1109–1115.
- X. Zhao, Z. Wu, S. Tan, D.-J. Fan, Z. Li, X. Wan, and G. Li, “Semi-supervised spatial temporal attention network for video polyp segmentation,” in MICCAI, 2022, pp. 456–466.
- R. Zhang, S. Liu, Y. Yu, and G. Li, “Self-supervised correction learning for semi-supervised biomedical image segmentation,” in MICCAI, 2021, pp. 134–144.
- M. Zhu, Z. Chen, and Y. Yuan, “Feddm: Federated weakly supervised segmentation via annotation calibration and gradient de-conflicting,” IEEE TMI, 2023.
- L. Ruiz and F. Martínez, “Weakly supervised polyp segmentation from an attention receptive field mechanism,” in EMBC, 2022, pp. 3745–3748.
- J. Dong, Y. Cong, G. Sun, and D. Hou, “Semantic-transferable weakly-supervised endoscopic lesions segmentation,” in ICCV, 2019, pp. 10 712–10 721.
- J. Dong, Y. Cong, G. Sun, Y. Yang, X. Xu, and Z. Ding, “Weakly-supervised cross-domain adaptation for endoscopic lesions segmentation,” IEEE TCSVT, vol. 31, no. 5, 2020.
- Y. Tian, F. Liu, G. Pang, Y. Chen, Y. Liu, J. W. Verjans, R. Singh, and G. Carneiro, “Self-supervised multi-class pre-training for unsupervised anomaly detection and segmentation in medical images,” arXiv preprint arXiv:2109.01303, 2021.
- Y. Tian, G. Pang, F. Liu, Y. Chen, S. H. Shin, J. W. Verjans, R. Singh, and G. Carneiro, “Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images,” in MICCAI, 2021, pp. 128–140.
- R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv preprint arXiv:1901.03407, 2019.
- T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar, “Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance,” arXiv preprint arXiv:1812.02765, 2018.
- Y. Tian, G. Pang, Y. Liu, C. Wang, Y. Chen, F. Liu, R. Singh, J. W. Verjans, and G. Carneiro, “Unsupervised anomaly detection in medical images with a memory-augmented multi-level cross-attentional masked autoencoder,” arXiv preprint arXiv:2203.11725, 2022.
- K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in CVPR, 2022, pp. 16 000–16 009.
- A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16-16 words: Transformers for image recognition at scale,” in ICLR, 2021.
- D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in MMM, 2020, pp. 451–462.
- J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” CMIG, vol. 43, pp. 99–111, 2015.
- J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012.
- J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” IJCARS, vol. 9, pp. 283–293, 2014.
- J. Han, Y. Ren, J. Ding, X. Pan, K. Yan, and G.-S. Xia, “Expanding low-density latent regions for open-set object detection,” in CVPR, 2022, pp. 9591–9600.
- N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE TMI, vol. 35, no. 2, pp. 630–644, 2015.
- P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” arXiv preprint arXiv:1807.02011, 2018.
- Y. Chen, Y. Tian, G. Pang, and G. Carneiro, “Deep one-class classification via interpolated gaussian descriptor,” in AAAI, 2022, pp. 383–392.
- J. Wyatt, A. Leach, S. M. Schmon, and C. G. Willcocks, “Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise,” in IEEE CVPR-W, 2022, pp. 650–656.
- M.-M. Cheng and D.-P. Fan, “Structure-measure: A new way to evaluate foreground maps,” IJCV, vol. 129, pp. 2622–2638, 2021.
- D.-P. Fan, G.-P. Ji, X. Qin, and M.-M. Cheng, “Cognitive vision inspired object segmentation metric and loss function,” SSCI Informationis, vol. 6, pp. 1475–1489, 2021.
- T. Li, H. Chang, S. Mishra, H. Zhang, D. Katabi, and D. Krishnan, “Mage: Masked generative encoder to unify representation learning and image synthesis,” in Conference on computer vision and pattern recognition, 2023, pp. 2142–2152.
- Ge-Peng Ji (29 papers)
- Jing Zhang (731 papers)
- Dylan Campbell (44 papers)
- Huan Xiong (42 papers)
- Nick Barnes (81 papers)