Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unique Characterisability and Learnability of Temporal Queries Mediated by an Ontology (2306.07662v3)

Published 13 Jun 2023 in cs.AI, cs.DB, and cs.LO

Abstract: Algorithms for learning database queries from examples and unique characterisations of queries by examples are prominent starting points for developing automated support for query construction and explanation. We investigate how far recent results and techniques on learning and unique characterisations of atemporal queries mediated by an ontology can be extended to temporal data and queries. Based on a systematic review of the relevant approaches in the atemporal case, we obtain general transfer results identifying conditions under which temporal queries composed of atemporal ones are (polynomially) learnable and uniquely characterisable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. 2011. Characterizing schema mappings via data examples. ACM Trans. Database Syst. 36(4):23.
  2. Angluin, D. 1987a. Learning regular sets from queries and counterexamples. Inf. Comput. 75(2):87–106.
  3. Angluin, D. 1987b. Queries and concept learning. Mach. Learn. 2(4):319–342.
  4. 2016. The exact complexity of the first-order logic definability problem. ACM Trans. Database Syst. 41(2):13:1–13:14.
  5. 2009. The DL-Lite family and relations. J. Artif. Intell. Res. 36:1–69.
  6. 2014. A cookbook for temporal conceptual data modelling with description logics. ACM Trans. Comput. Log. 15(3):25:1–25:50.
  7. 2017. Ontology-mediated query answering over temporal data: A survey. In Proc. of TIME, 1:1–1:37. Schloss Dagstuhl, Leibniz-Zentrum für Informatik.
  8. 2022. First-order rewritability and complexity of two-dimensional temporal ontology-mediated queries. J. Artif. Intell. Res. 75:1223–1291.
  9. 2017. An Introduction to Description Logics. Cambridge University Press.
  10. 2015. Temporal query entailment in the description logic SHQ. J. Web Semant. 33:71–93.
  11. 2017. The complexity of reverse engineering problems for conjunctive queries. In Proc. of ICDT, 7:1–7:17.
  12. 2013. Tractable queries for lightweight description logics. In Proc. of IJCAI, 768–774. IJCAI/AAAI.
  13. 2014. Ontology-based data access: A study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39(4):33:1–33:44.
  14. 2016. First order-rewritability and containment of conjunctive queries in Horn description logics. In Proc. of IJCAI, 965–971.
  15. 2015. Temporal query answering in the description logic EL. In Proc. of IJCAI, 2819–2825. AAAI Press.
  16. 2007a. EQL-Lite: Effective first-order query processing in description logics. In Proc. of IJCAI, 274–279.
  17. 2007b. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3):385–429.
  18. 2019. Learning interpretable models expressed in linear temporal logic. In Proc. of ICAPS, 621–630. AAAI Press.
  19. 1998. Model Theory. Elsevier.
  20. 2021. The complexity of learning linear temporal formulas from examples. CoRR abs/2102.00876.
  21. 2022. Unique characterisability and learnability of temporal instance queries. In Proc. of KR.
  22. 2023. Reverse engineering of temporal queries mediated by LTL ontologies. In Proceedings of IJCAI.
  23. 2019. Learning description logic concepts: When can positive and negative examples be separated? In Proc. of IJCAI, 1682–1688.
  24. 2021. Actively learning concepts and conjunctive queries under ELr-ontologies. In Proc. of IJCAI, 1887–1893. ijcai.org.
  25. 2022a. Exact learning of ELI queries in the presence of dl-lite-horn ontologies. In Proc. of DL. CEUR-WS.org.
  26. 2022b. Frontiers and exact learning of ELI queries under dl-lite ontologies. In Proc. of IJCAI, 2627–2633.
  27. 2016. Temporalized EL ontologies for accessing temporal data: Complexity of atomic queries. In Proc. of IJCAI, 1102–1108. IJCAI/AAAI Press.
  28. 2018. Reverse engineering queries in ontology-enriched systems: The case of expressive Horn description logic ontologies. In Proc. of IJCAI-ECAI.
  29. 2022. Logical separability of labeled data examples under ontologies. Artif. Intell. 313:103785.
  30. 2011. On (in)tractability of OBDA with OWL 2 QL. In Proc. of DL. CEUR-WS.org.
  31. Kolaitis, P. G. 2011. Schema Mappings and Data Examples: Deriving Syntax from Semantics (Invited Talk). In Proc. of FSTTCS, volume 13, 25–25. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  32. 2017. Exact learning of lightweight description logic ontologies. J. Mach. Learn. Res. 18:201:1–201:63.
  33. 2010. Concept learning in description logics using refinement operators. Machine Learning 78:203–250.
  34. 2015. General ltl specification mining (t). In Proc. of ASE, 81–92. IEEE.
  35. Martins, D. M. L. 2019. Reverse engineering database queries from examples: State-of-the-art, challenges, and research opportunities. Inf. Syst. 83:89–100.
  36. McKenzie, R. 1972. Equational bases and nonmodular lattice varieties. Transactions of the American Mathematical Society 174:1–43.
  37. 2018. Learning linear temporal properties. In Proc. of FMCAD, 1–10. IEEE.
  38. Ozaki, A. 2020. Learning description logic ontologies: Five approaches. where do they stand? Künstliche Intell. 34(3):317–327.
  39. Sestic, P. 2023. Unique characterisability of linear temporal logic. Msc, University of Amsterdam.
  40. 2015. Characterizing XML twig queries with examples. In Proc. of ICDT, 144–160.
  41. 2022. Conjunctive queries: Unique characterizations and exact learnability. ACM Trans. Database Syst. 47(4):14:1–14:41.
  42. 2023. Characterising modal formulas with examples. CoRR abs/2304.06646.
  43. 2023. Sat-based PAC learning of description logic concepts. In Proc. of IJCAI, 3347–3355. ijcai.org.
  44. 2013. Learning schema mappings. ACM Trans. Database Syst. 38(4):28:1–28:31.
  45. Tobies, S. 2001. Complexity results and practical algorithms for logics in knowledge representation. Ph.D. Dissertation, RWTH Aachen University, Germany.
  46. 2020. DatalogMTL over the Integer Timeline. In Proc. of KR, 768–777.

Summary

We haven't generated a summary for this paper yet.