NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering (2306.07632v3)
Abstract: This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces using pre-integrated rendering from multi-view images or video. Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry, which facilitates the factorization of the radiance field into two components: a spatially varying material field and an all-frequency lighting representation. This factorization, jointly optimized using an adapted differentiable pre-integrated rendering framework with material encoding regularization, in turn addresses the ambiguity of geometry reconstruction and leads to better disentanglement and refinement of each scene property. Additionally, we introduced a method to distil indirect illumination fields from the learned representations, further recovering the complex illumination effect like inter-reflection. Consequently, our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines. Qualitative and quantitative experiments have shown that NeuS-PIR outperforms existing methods across various tasks on both synthetic and real datasets. Source code is available at https://github.com/Sheldonmao/NeuSPIR
- S. Bi, Z. Xu, K. Sunkavalli, M. Hašan, Y. Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi, “Deep reflectance volumes: Relightable reconstructions from multi-view photometric images,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 294–311.
- S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli, M. Hašan, Y. Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi, “Neural reflectance fields for appearance acquisition,” arXiv preprint arXiv:2008.03824, 2020.
- K. Zhang, F. Luan, Z. Li, and N. Snavely, “Iron: Inverse rendering by optimizing neural sdfs and materials from photometric images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2022, pp. 5565–5574.
- J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans, T. Müller, and S. Fidler, “Extracting triangular 3d models, materials, and lighting from images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2022, pp. 8280–8290.
- P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction,” in Proc. of the Conference on Neural Information Processing Systems (NeurIPS), 2021.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020.
- X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron, “Nerfactor: Neural factorization of shape and reflectance under an unknown illumination,” ACM Trans. on Graphics (TOG), vol. 40, no. 6, pp. 1–18, 2021.
- M. Boss, V. Jampani, R. Braun, C. Liu, J. Barron, and H. Lensch, “Neural-pil: Neural pre-integrated lighting for reflectance decomposition,” in Proc. of the Conference on Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 10 691–10 704.
- P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron, “Nerv: Neural reflectance and visibility fields for relighting and view synthesis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 7495–7504.
- M. Oechsle, S. Peng, and A. Geiger, “Unisurf: Unifying neural implicit surfaces and radiance fields for multi-view reconstruction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 5589–5599.
- L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of neural implicit surfaces,” in Proc. of the Conference on Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 4805–4815.
- M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. P. Lensch, “Nerd: Neural reflectance decomposition from image collections,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021.
- Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference for unstructured multi-view stereo,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 767–783.
- Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou, and L. Zhang, “Pcw-net: Pyramid combination and warping cost volume for stereo matching,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, 2022, pp. 280–297.
- W. Su, Q. Xu, and W. Tao, “Uncertainty guided multi-view stereo network for depth estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 11, pp. 7796–7808, 2022.
- H. Zhang, X. Ye, S. Chen, Z. Wang, H. Li, and W. Ouyang, “The farther the better: Balanced stereo matching via depth-based sampling and adaptive feature refinement,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 7, pp. 4613–4625, 2021.
- H. Dai, X. Zhang, Y. Zhao, H. Sun, and N. Zheng, “Adaptive disparity candidates prediction network for efficient real-time stereo matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 5, pp. 3099–3110, 2022.
- Y. Lee and H. Kim, “A high-throughput depth estimation processor for accurate semiglobal stereo matching using pipelined inter-pixel aggregation,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 1, pp. 411–422, 2022.
- S. Liu, T. Li, W. Chen, and H. Li, “Soft rasterizer: A differentiable renderer for image-based 3d reasoning,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2019, pp. 7708–7717.
- Y. Liao, S. Donne, and A. Geiger, “Deep marching cubes: Learning explicit surface representations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 2916–2925.
- C. Häne, S. Tulsiani, and J. Malik, “Hierarchical surface prediction for 3d object reconstruction,” in Proc. of the Intl. Conf. on 3D Vision (3DV). IEEE, 2017, pp. 412–420.
- T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A papier-mâché approach to learning 3d surface generation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 216–224.
- T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler, “Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis,” in Proc. of the Conference on Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 6087–6101.
- J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021, pp. 5855–5864.
- Y. Wang, Q. Han, M. Habermann, K. Daniilidis, C. Theobalt, and L. Liu, “Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2022.
- X. Long, C. Lin, P. Wang, T. Komura, and W. Wang, “Sparseneus: Fast generalizable neural surface reconstruction from sparse views,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, 2022.
- C. Zeng, G. Chen, Y. Dong, P. Peers, H. Wu, and X. Tong, “Relighting neural radiance fields with shadow and highlight hints,” in ACM SIGGRAPH 2023 Conference Proceedings, 2023.
- Z. Wang, W. Chen, D. Acuna, J. Kautz, and S. Fidler, “Neural light field estimation for street scenes with differentiable virtual object insertion,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, 2022, pp. 380–397.
- J. Han, S. Hong, and M. G. Kang, “Canonical illumination decomposition and its applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 11, pp. 4158–4170, 2020.
- G. Zhang, Z. Luo, Y. Chen, Y. Zheng, and W. Lin, “Illumination unification for person re-identification,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6766–6777, 2022.
- D. Gao, G. Chen, Y. Dong, P. Peers, K. Xu, and X. Tong, “Deferred neural lighting: free-viewpoint relighting from unstructured photographs,” ACM Trans. on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020.
- F. Luan, S. Zhao, K. Bala, and Z. Dong, “Unified shape and svbrdf recovery using differentiable monte carlo rendering,” in Computer Graphics Forum, vol. 40, no. 4. Wiley Online Library, 2021, pp. 101–113.
- K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely, “Physg: Inverse rendering with spherical gaussians for physics-based material editing and relighting,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 5453–5462.
- D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srinivasan, “Ref-nerf: Structured view-dependent appearance for neural radiance fields,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR). IEEE, 2022, pp. 5481–5490.
- Y. Yao, J. Zhang, J. Liu, Y. Qu, T. Fang, D. McKinnon, Y. Tsin, and L. Quan, “Neilf: Neural incident light field for physically-based material estimation,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, 2022, pp. 700–716.
- J. Zhang, Y. Yao, S. Li, J. Liu, T. Fang, D. McKinnon, Y. Tsin, and L. Quan, “Neilf++: Inter-reflectable light fields for geometry and material estimation,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2023.
- J. Hasselgren, N. Hofmann, and J. Munkberg, “Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising,” in Proc. of the Conference on Neural Information Processing Systems (NeurIPS), 2022.
- L. Lin, J. Zhu, and Y. Zhang, “Multiview textured mesh recovery by differentiable rendering,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 4, pp. 1684–1696, 2023.
- H. Jin, I. Liu, P. Xu, X. Zhang, S. Han, S. Bi, X. Zhou, Z. Xu, and H. Su, “Tensoir: Tensorial inverse rendering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2023, pp. 165–174.
- R. Liang, H. Chen, C. Li, F. Chen, S. Panneer, and N. Vijaykumar, “Envidr: Implicit differentiable renderer with neural environment lighting,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2023.
- Y. Li, Q. Hu, Z. Ouyang, and S. Shen, “Neural reflectance decomposition under dynamic point light,” IEEE Trans. Circuits Syst. Video Technol., pp. 1–1, 2023.
- Y. Liu, P. Wang, C. Lin, X. Long, J. Wang, L. Liu, T. Komura, and W. Wang, “Nero: Neural geometry and brdf reconstruction of reflective objects from multiview images,” in SIGGRAPH, 2023.
- C. Sun, G. Cai, Z. Li, K. Yan, C. Zhang, C. Marshall, J.-B. Huang, S. Zhao, and Z. Dong, “Neural-pbir reconstruction of shape, material, and illumination,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2023, pp. 18 046–18 056.
- B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for real-time radiance field rendering,” ACM Trans. on Graphics (TOG), vol. 42, no. 4, 2023.
- Y. Jiang, J. Tu, Y. Liu, X. Gao, X. Long, W. Wang, and Y. Ma, “Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2024.
- J. Gao, C. Gu, Y. Lin, H. Zhu, X. Cao, L. Zhang, and Y. Yao, “Relightable 3d gaussian: Real-time point cloud relighting with brdf decomposition and ray tracing,” arXiv preprint arXiv:2311.16043, 2023.
- Y. Shi, Y. Wu, C. Wu, X. Liu, C. Zhao, H. Feng, J. Liu, L. Zhang, J. Zhang, B. Zhou et al., “Gir: 3d gaussian inverse rendering for relightable scene factorization,” arXiv preprint arXiv:2312.05133, 2023.
- Z. Liang, Q. Zhang, Y. Feng, Y. Shan, and K. Jia, “Gs-ir: 3d gaussian splatting for inverse rendering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2024.
- B. Karis and E. Games, “Real shading in unreal engine 4,” Proc. Physically Based Shading Theory Practice, vol. 4, no. 3, p. 1, 2013.
- R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. on Graphics (TOG), vol. 1, no. 1, pp. 7–24, 1982.
- B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics conference on Rendering Techniques, 2007, pp. 195–206.
- T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM Trans. on Graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.
- Y. Zhang, J. Sun, X. He, H. Fu, R. Jia, and X. Zhou, “Modeling indirect illumination for inverse rendering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2022.
- M. Boss, A. Engelhardt, A. Kar, Y. Li, D. Sun, J. T. Barron, H. P. Lensch, and V. Jampani, “SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.
- R. Li, M. Tancik, and A. Kanazawa, “Nerfacc: A general nerf accleration toolbox.” arXiv preprint arXiv:2210.04847, 2022.
- E. Insafutdinov, D. Campbell, J. F. Henriques, and A. Vedaldi, “Snes: Learning probably symmetric neural surfaces from incomplete data,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings. Springer, 2022, pp. 367–383.
- J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny, “Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021, pp. 10 901–10 911.
- E. Chernyaev, “Marching cubes 33: Construction of topologically correct isosurfaces,” CERN, Tech. Rep., 1995.
- Z. Chen and H. Zhang, “Neural marching cubes,” ACM Trans. on Graphics (TOG), vol. 40, no. 6, pp. 1–15, 2021.
- Z. Chen, A. Tagliasacchi, T. Funkhouser, and H. Zhang, “Neural dual contouring,” ACM Trans. on Graphics (TOG), vol. 41, no. 4, pp. 1–13, 2022.