Infrared fixed point of the SU(3) gauge theory with $N_f = 10$ flavors (2306.07236v2)
Abstract: We use lattice simulations and the continuous renormalization-group method, based on the gradient flow, to calculate the $\beta$ function and anomalous dimensions of the SU(3) gauge theory with $N_f=10$ flavors of fermions in the fundamental representation. We employ several improvements to extend the range of available renormalized couplings, including the addition of heavy Pauli-Villars bosons to reduce cutoff effects and the combination of a range of gradient flow transformations. While in the weak coupling regime our result is consistent with those of earlier studies, our techniques allow us to study the system at much stronger couplings than previously possible. We find that the renormalization group $\beta$ function develops a zero, corresponding to an infrared-stable fixed point, at gradient-flow coupling $g2=15.0(5)$. We also determine the mass and tensor anomalous dimensions: At the fixed point we find $\gamma_m\simeq0.6$, suggesting that this system might be deep inside the conformal window.
- T.-W. Chiu, The β𝛽\betaitalic_β-function of SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) gauge theory with Nf=10subscript𝑁𝑓10N_{f}=10italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 10 massless fermions in the fundamental representation, (2016), arXiv:1603.08854 [hep-lat] .
- T.-W. Chiu, Discrete β𝛽\betaitalic_β-function of the SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) gauge theory with 10 massless domain-wall fermions, PoS LATTICE2016, 228 (2017).
- T.-W. Chiu, Improved study of the β𝛽\betaitalic_β-function of SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) gauge theory with Nf=10subscript𝑁𝑓10N_{f}=10italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 10 massless domain-wall fermions, Phys. Rev. D 99, 014507 (2019), arXiv:1811.01729 [hep-lat] .
- A. Hasenfratz, C. Rebbi, and O. Witzel, Nonperturbative determination of β𝛽\betaitalic_β functions for SU(3) gauge theories with 10 and 12 fundamental flavors using domain wall fermions, Phys. Lett. B798, 134937 (2019), arXiv:1710.11578 [hep-lat] .
- A. Hasenfratz, C. Rebbi, and O. Witzel, Gradient flow step-scaling function for SU(3) with ten fundamental flavors, Phys. Rev. D 101, 114508 (2020), arXiv:2004.00754 [hep-lat] .
- M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08, 071, [Erratum: JHEP 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .
- M. Lüscher, Chiral symmetry and the Yang–Mills gradient flow, JHEP 04, 123, arXiv:1302.5246 [hep-lat] .
- A. Hasenfratz and O. Witzel, Continuous β𝛽\betaitalic_β function for SU(3) with Nfsubscript𝑁𝑓N_{f}italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT fundamental flavors, work in progress (2023).
- R. V. Harlander and T. Neumann, The perturbative QCD gradient flow to three loops, JHEP 06, 161, arXiv:1606.03756 [hep-ph] .
- A. Hasenfratz, Y. Shamir, and B. Svetitsky, Taming lattice artifacts with Pauli-Villars fields, Phys. Rev. D 104, 074509 (2021), arXiv:2109.02790 [hep-lat] .
- A. Hasenfratz, Emergent strongly coupled ultraviolet fixed point in four dimensions with eight Kähler-Dirac fermions, Phys. Rev. D 106, 014513 (2022), arXiv:2204.04801 [hep-lat] .
- A. Hasenfratz and O. Witzel, Continuous renormalization group β𝛽\betaitalic_β function from lattice simulations, Phys. Rev. D 101, 034514 (2020), arXiv:1910.06408 [hep-lat] .
- A. Hasenfratz and O. Witzel, Continuous β𝛽\betaitalic_β function for the SU(3) gauge systems with two and twelve fundamental flavors, PoS LATTICE2019, 094 (2019), arXiv:1911.11531 [hep-lat] .
- A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D64, 034504 (2001), arXiv:hep-lat/0103029 [hep-lat] .
- A. Hasenfratz, R. Hoffmann, and S. Schaefer, Hypercubic smeared links for dynamical fermions, JHEP 05, 029, arXiv:hep-lat/0702028 [hep-lat] .
- Y. Shamir, B. Svetitsky, and E. Yurkovsky, Improvement via hypercubic smearing in triplet and sextet QCD, Phys. Rev. D 83, 097502 (2011), arXiv:1012.2819 [hep-lat] .
- T. DeGrand, Y. Shamir, and B. Svetitsky, Suppressing dislocations in normalized hypercubic smearing, Phys. Rev. D90, 054501 (2014), arXiv:1407.4201 [hep-lat] .
- A. Carosso, A. Hasenfratz, and E. T. Neil, Nonperturbative Renormalization of Operators in Near-Conformal Systems Using Gradient Flows, Phys. Rev. Lett. 121, 201601 (2018), arXiv:1806.01385 [hep-lat] .
- T. Appelquist et al. (Lattice Strong Dynamics), Near-conformal dynamics in a chirally broken system, Phys. Rev. D 103, 014504 (2021), arXiv:2007.01810 [hep-ph] .
- O. Witzel, A. Hasenfratz, and C. T. Peterson (Lattice Strong Dynamics), Composite Higgs scenario in mass-split models, PoS ICHEP2020, 675 (2021), arXiv:2011.05175 [hep-ph] .
- T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196, 189 (1982).
- T. A. Ryttov and R. Shrock, Scheme-independent calculation of γψ¯ψ,IRsubscript𝛾¯𝜓𝜓𝐼𝑅\gamma_{\bar{\psi}\psi,IR}italic_γ start_POSTSUBSCRIPT over¯ start_ARG italic_ψ end_ARG italic_ψ , italic_I italic_R end_POSTSUBSCRIPT for an SU(3) gauge theory, Phys. Rev. D 94, 105014 (2016a), arXiv:1608.00068 [hep-th] .
- T. A. Ryttov and R. Shrock, Higher-order scheme-independent series expansions of γψ¯ψ,IRsubscript𝛾¯𝜓𝜓𝐼𝑅\gamma_{\bar{\psi}\psi,IR}italic_γ start_POSTSUBSCRIPT over¯ start_ARG italic_ψ end_ARG italic_ψ , italic_I italic_R end_POSTSUBSCRIPT and βIR′subscriptsuperscript𝛽′𝐼𝑅\beta^{\prime}_{IR}italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_I italic_R end_POSTSUBSCRIPT in conformal field theories, Phys. Rev. D 95, 105004 (2017), arXiv:1703.08558 [hep-th] .
- T. A. Ryttov and R. Shrock, Scheme-Independent Series Expansions at an Infrared Zero of the Beta Function in Asymptotically Free Gauge Theories, Phys. Rev. D 94, 125005 (2016b), arXiv:1610.00387 [hep-th] .
- B. S. Kim, D. K. Hong, and J.-W. Lee, Into the conformal window: Multirepresentation gauge theories, Phys. Rev. D 101, 056008 (2020), arXiv:2001.02690 [hep-ph] .
- MILC Collaboration, http://www.physics.utah.edu/~detar/milc/.