Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximising Coefficiency of Human-Robot Handovers through Reinforcement Learning (2306.07205v1)

Published 12 Jun 2023 in cs.RO

Abstract: Handing objects to humans is an essential capability for collaborative robots. Previous research works on human-robot handovers focus on facilitating the performance of the human partner and possibly minimising the physical effort needed to grasp the object. However, altruistic robot behaviours may result in protracted and awkward robot motions, contributing to unpleasant sensations by the human partner and affecting perceived safety and social acceptance. This paper investigates whether transferring the cognitive science principle that "humans act coefficiently as a group" (i.e. simultaneously maximising the benefits of all agents involved) to human-robot cooperative tasks promotes a more seamless and natural interaction. Human-robot coefficiency is first modelled by identifying implicit indicators of human comfort and discomfort as well as calculating the robot energy consumption in performing the desired trajectory. We then present a reinforcement learning approach that uses the human-robot coefficiency score as reward to adapt and learn online the combination of robot interaction parameters that maximises such coefficiency. Results proved that by acting coefficiently the robot could meet the individual preferences of most subjects involved in the experiments, improve the human perceived comfort, and foster trust in the robotic partner.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Bestick, R. Pandya, R. Bajcsy, and A. Dragan, “Learning human ergonomic preferences for handovers,” in Proceedings of International Conference on Robotics and Automation (ICRA), pp. 3257–3264, 2018.
  2. W. Kim, M. Lorenzini, P. Balatti, P. D. Nguyen, U. Pattacini, V. Tikhanoff, L. Peternel, C. Fantacci, L. Natale, G. Metta, and A. Ajoudani, “Adaptable workstations for human-robot collaboration: A reconfigurable framework for improving worker ergonomics and productivity,” IEEE Robotics & Automation Magazine, pp. 14–26, 2019.
  3. B. Busch, G. Maeda, Y. Mollard, M. Demangeat, and M. Lopes, “Postural optimization for an ergonomic human-robot interaction,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017.
  4. P. Ardon, M. E. Cabrera, E. Pairet, R. P. A. Petrick, S. Ramamoorthy, K. S. Lohan, and M. Cakmak, “Affordance-aware handovers with human arm mobility constraints,” IEEE Robotics and Automation Letters, pp. 3136–3143, 2021.
  5. J. Mainprice, M. Gharbi, T. Simeon, and R. Alami, “Sharing effort in planning human-robot handover tasks,” in Proceedings of IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 764–770, IEEE, 2012.
  6. M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler, “Human preferences for robot-human hand-over configurations,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), pp. 1986–1993, IEEE, 2011.
  7. E. A. Sisbot and R. Alami, “A human-aware manipulation planner,” IEEE Transactions on Robotics, pp. 1045–1057, 2012.
  8. V. Ortenzi, A. Cosgun, T. Pardi, W. P. Chan, E. Croft, and D. Kulic, “Object handovers: A review for robotics,” IEEE Transactions on Robotics, pp. 1855–1873, 2021.
  9. M. Lorenzini, M. Lagomarsino, L. Fortini, S. Gholami, and A. Ajoudani, “Ergonomic human-robot collaboration in industry: A review,” Frontiers in Robotics and AI, p. 262, 2023.
  10. D. A. Norman, “Human-centered design considered harmful,” Interactions, pp. 14–19, 2005.
  11. A. Dragan, K. Lee, and S. Srinivasa, “Legibility and predictability of robot motion,” in Proceedings of International Conference on Human-Robot Interaction (HRI), pp. 301–308, IEEE, 2013.
  12. F. Stulp, J. Grizou, B. Busch, and M. Lopes, “Facilitating intention prediction for humans by optimizing robot motions,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), pp. 1249–1255, IEEE, 2015.
  13. G. Török, B. Pomiechowska, G. Csibra, and N. Sebanz, “Rationality in joint action: Maximizing coefficiency in coordination,” Psychological Science, pp. 930–941, 2019.
  14. J. W. Strachan and G. Török, “Efficiency is prioritised over fairness when distributing joint actions,” Acta Psychologica, p. 103158, 2020.
  15. G. Török, O. Stanciu, N. Sebanz, and G. Csibra, “Computing joint action costs: Co-actors minimize the aggregate individual costs in an action sequence,” Open Mind, pp. 1–13, 2021.
  16. M. Lagomarsino, M. Lorenzini, E. De Momi, and A. Ajoudani, “Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022.
  17. M. Khan, I. Franks, D. Elliott, G. Lawrence, R. Chua, P. Bernier, S. Hansen, and D. Weeks, “Inferring online and offline processing of visual feedback in target-directed movements from kinematic data,” Neuroscience & Biobehavioral Reviews, pp. 1106–1121, 2006.
  18. J. Podda, C. Ansuini, R. Vastano, A. Cavallo, and C. Becchio, “The heaviness of invisible objects: Predictive weight judgments from observed real and pantomimed grasps,” Cognition, pp. 140–145, 2017.
  19. M. Lagomarsino, M. Lorenzini, E. De Momi, and A. Ajoudani, “An online framework for cognitive load assessment in industrial tasks,” Robotics and Computer-Integrated Manufacturing, p. 102380, 2022.
  20. U. Weidenbacher, G. Layher, P.-M. Strauss, and H. Neumann, “A comprehensive head pose and gaze database,” in Proceedings of International Conference on Intelligent Environments (IE), pp. 455–458, IEEE, 2007.
  21. L. McAtamney and E. N. Corlett, “RULA: a survey method for the investigation of work-related upper limb disorders,” Applied ergonomics, pp. 91–99, 1993.
  22. S. Hignett and L. McAtamney, “Rapid entire body assessment (REBA),” Applied Ergonomics, pp. 201–205, 2000.
  23. S. Gholami, M. Lorenzini, E. De Momi, and A. Ajoudani, “Quantitative physical ergonomics assessment of teleoperation interfaces,” IEEE Transactions on Human-Machine Systems, pp. 169–180, 2022.
  24. A. Mohammed, B. Schmidt, L. Wang, and L. Gao, “Minimizing energy consumption for robot arm movement,” Procedia, pp. 400–405, 2014.
  25. T. Kanda, H. Ishiguro, M. Imai, and T. Ono, “Body movement analysis of human-robot interaction,” in Proceedings of Int. Joint Conference on Artificial Intelligence, 2003.
  26. M. Lagomarsino, M. Lorenzini, P. Balatti, E. De Momi, and A. Ajoudani, “Pick the right co-worker: Online assessment of cognitive ergonomics in human-robot collaborative assembly,” IEEE Transactions on Cognitive and Developmental Systems, pp. 1–1, 2022.
  27. R. J. Kirschner, H. Mayer, L. Burr, N. Mansfeld, S. Abdolshah, and S. Haddadin, “Expectable motion unit: Avoiding hazards from human involuntary motions in human-robot interaction,” pp. 2993–3000, 2022.
  28. D. Kulić and E. Croft, “Physiological and subjective responses to articulated robot motion,” Robotica, pp. 13–27, 2007.
  29. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine Learning, pp. 235–256, 2002.
  30. M. D. Constable, A. P. Bayliss, S. P. Tipper, A. P. Spaniol, J. Pratt, and T. N. Welsh, “Ownership status influences the degree of joint facilitatory behavior,” Psychological Science, pp. 1371–1378, 2016.
  31. I. Georgiou, C. Becchio, S. Glover, and U. Castiello, “Different action patterns for cooperative and competitive behaviour,” Cognition, pp. 415–433, 2007.
  32. G. Charalambous, S. Fletcher, and P. Webb, “The development of a scale to evaluate trust in industrial human-robot collaboration,” International Journal of Social Robotics, pp. 193–209, 2016.
Citations (10)

Summary

We haven't generated a summary for this paper yet.