Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Token Pruning for Object Detection and Instance Segmentation (2306.07050v3)

Published 12 Jun 2023 in cs.CV

Abstract: Vision Transformers (ViTs) have shown impressive performance in computer vision, but their high computational cost, quadratic in the number of tokens, limits their adoption in computation-constrained applications. However, this large number of tokens may not be necessary, as not all tokens are equally important. In this paper, we investigate token pruning to accelerate inference for object detection and instance segmentation, extending prior works from image classification. Through extensive experiments, we offer four insights for dense tasks: (i) tokens should not be completely pruned and discarded, but rather preserved in the feature maps for later use. (ii) reactivating previously pruned tokens can further enhance model performance. (iii) a dynamic pruning rate based on images is better than a fixed pruning rate. (iv) a lightweight, 2-layer MLP can effectively prune tokens, achieving accuracy comparable with complex gating networks with a simpler design. We assess the effects of these design decisions on the COCO dataset and introduce an approach that incorporates these findings, showing a reduction in performance decline from ~1.5 mAP to ~0.3 mAP in both boxes and masks, compared to existing token pruning methods. In relation to the dense counterpart that utilizes all tokens, our method realizes an increase in inference speed, achieving up to 34% faster performance for the entire network and 46% for the backbone.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yifei Liu (43 papers)
  2. Mathias Gehrig (23 papers)
  3. Nico Messikommer (16 papers)
  4. Marco Cannici (20 papers)
  5. Davide Scaramuzza (190 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com