Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Brief Review of Hypernetworks in Deep Learning (2306.06955v3)

Published 12 Jun 2023 in cs.LG

Abstract: Hypernetworks, or hypernets for short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning. Despite their success across different problem settings, there is currently no comprehensive review available to inform researchers about the latest developments and to assist in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example of training deep neural networks using hypernets and propose categorizing hypernets based on five design criteria: inputs, outputs, variability of inputs and outputs, and the architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain underexplored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.

Citations (61)

Summary

We haven't generated a summary for this paper yet.