Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trees versus Neural Networks for enhancing tau lepton real-time selection in proton-proton collisions (2306.06743v2)

Published 11 Jun 2023 in hep-ex, cs.LG, and physics.ins-det

Abstract: This paper introduces supervised learning techniques for real-time selection (triggering) of hadronically decaying tau leptons in proton-proton colliders. By implementing classic machine learning decision trees and advanced deep learning models, such as Multi-Layer Perceptron or residual neural networks, visible improvements in performance compared to standard threshold tau triggers are observed. We show how such an implementation may lower selection energy thresholds, thus contributing to increasing the sensitivity of searches for new phenomena in proton-proton collisions classified by low-energy tau leptons. Moreover, we analyze when it is better to use neural networks versus decision trees for tau triggers with conclusions relevant to other problems in physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Aad, G. et al. The ATLAS Experiment at the CERN Large Hadron Collider. \JournalTitleJINST 3, S08003, DOI: 10.1088/1748-0221/3/08/S08003 (2008).
  2. Chatrchyan, S. et al. The CMS Experiment at the CERN LHC. \JournalTitleJINST 3, S08004, DOI: 10.1088/1748-0221/3/08/S08004 (2008).
  3. Aaboud, M. et al. Performance of the ATLAS Trigger System in 2015. \JournalTitleEur. Phys. J. C 77, 317, DOI: 10.1140/epjc/s10052-017-4852-3 (2017). 1611.09661.
  4. ATLAS Collaboration. The ATLAS Tau Trigger in Run 2 (2017). https://cds.cern.ch/record/2274201.
  5. Khachatryan, V. et al. The CMS trigger system. \JournalTitleJINST 12, P01020, DOI: 10.1088/1748-0221/12/01/P01020 (2017). 1609.02366.
  6. Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle physics. \JournalTitleJINST 13, P07027, DOI: 10.1088/1748-0221/13/07/P07027 (2018). 1804.06913.
  7. Loncar, V. et al. Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML. \JournalTitleMach. Learn. Sci. Tech. 2, 015001, DOI: 10.1088/2632-2153/aba042 (2021). 2003.06308.
  8. Nanosecond machine learning regression with deep boosted decision trees in FPGA for high energy physics. \JournalTitleJINST 17, P09039, DOI: 10.1088/1748-0221/17/09/P09039 (2022). 2207.05602.
  9. Branco, G. C. et al. Theory and phenomenology of two-Higgs-doublet models. \JournalTitlePhys. Rept. 516, 1–102, DOI: 10.1016/j.physrep.2012.02.002 (2012). 1106.0034.
  10. Djouadi, A. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. \JournalTitlePhys. Rept. 459, 1–241, DOI: 10.1016/j.physrep.2007.10.005 (2008). hep-ph/0503173.
  11. Workman, R. L. et al. Review of Particle Physics. \JournalTitlePTEP 2022, 083C01, DOI: 10.1093/ptep/ptac097 (2022).
  12. Tumasyan, A. et al. Identification of hadronic tau lepton decays using a deep neural network. \JournalTitleJINST 17, P07023, DOI: 10.1088/1748-0221/17/07/P07023 (2022). 2201.08458.
  13. The complete implementation of this work can be accessed at: https://github.com/MaayanLucyYaari/tua-trigger.git.
  14. Achenbach, R. et al. The ATLAS level-1 calorimeter trigger. \JournalTitleJINST 3, P03001, DOI: 10.1088/1748-0221/3/03/P03001 (2008).
  15. Aad, G. et al. Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System (2013).
  16. Aad, G. et al. Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger. \JournalTitleJINST 15, P11016, DOI: 10.1088/1748-0221/15/11/P11016 (2020). 2005.04179.
  17. Aleksa, M. et al. ATLAS Liquid Argon Calorimeter Phase-I Upgrade: Technical Design Report (2013). https://cds.cern.ch/record/1602230, Final version presented to December 2013 LHCC.
  18. Alwall, J. et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. \JournalTitleJHEP 07, 079, DOI: 10.1007/JHEP07(2014)079 (2014). 1405.0301.
  19. Sjöstrand, T. et al. An introduction to PYTHIA 8.2. \JournalTitleComput. Phys. Commun. 191, 159–177, DOI: 10.1016/j.cpc.2015.01.024 (2015). 1410.3012.
  20. DELPHES, a framework for fast simulation of a generic collider experiment (2009). 0903.2225.
  21. de Favereau, J. et al. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. \JournalTitleJHEP 02, 057, DOI: 10.1007/JHEP02(2014)057 (2014). 1307.6346.
  22. Delphes: A framework for fast simulation of a generic collider experiment. https://github.com/delphes/delphes.
  23. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, DOI: 10.1145/2939672.2939785 (ACM, 2016).
  24. Adam-Bourdarios, C. et al. The Higgs boson machine learning challenge. In Cowan, G., Germain, C., Guyon, I., Kégl, B. & Rousseau, D. (eds.) Proceedings of the NIPS 2014 Workshop on High-energy Physics and Machine Learning, vol. 42 of Proceedings of Machine Learning Research, 19–55 (PMLR, Montreal, Canada, 2015).
  25. Hong, T. M. et al. Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics. \JournalTitleJINST 16, P08016, DOI: 10.1088/1748-0221/16/08/P08016 (2021). 2104.03408.
  26. Deep residual learning for image recognition (2015). 1512.03385.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com