Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contact Reduction with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly (2306.06675v1)

Published 11 Jun 2023 in cs.RO

Abstract: In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using general geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,” vol. 39, no. 1, pp. 3–20. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0278364919887447
  2. K. Hauser, “Robust Contact Generation for Robot Simulation with Unstructured Meshes,” in Robotics Research: The 16th International Symposium ISRR, ser. Springer Tracts in Advanced Robotics, M. Inaba and P. Corke, Eds.   Springer International Publishing, pp. 357–373. [Online]. Available: https://doi.org/10.1007/978-3-319-28872-7_21
  3. Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak, Y. Guo, A. Moravanszky, G. State, M. Lu, A. Handa, and D. Fox, “Factory: Fast Contact for Robotic Assembly,” in Proceedings of Robotics: Science and Systems.
  4. M. Otaduy and M. Lin, “A modular haptic rendering algorithm for stable and transparent 6-DOF manipulation,” vol. 22, no. 4, pp. 751–762.
  5. T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep reinforcement learning for high precision assembly tasks,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, pp. 819–825. [Online]. Available: http://ieeexplore.ieee.org/document/8202244/
  6. G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea, E. Solowjow, and S. Levine, “Deep Reinforcement Learning for Industrial Insertion Tasks with Visual Inputs and Natural Rewards,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5548–5555.
  7. J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and P. Abbeel, “Reinforcement Learning on Variable Impedance Controller for High-Precision Robotic Assembly,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 3080–3087.
  8. T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine, “Offline Meta-Reinforcement Learning for Industrial Insertion,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 6386–6393.
  9. G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow, “Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9728–9735.
  10. C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada, “Variable Compliance Control for Robotic Peg-in-Hole Assembly: A Deep-Reinforcement-Learning Approach,” vol. 10, no. 19, p. 6923. [Online]. Available: https://www.mdpi.com/2076-3417/10/19/6923
  11. P. Hao, T. Lu, S. Cui, J. Wei, Y. Cai, and S. Wang, “Meta-Residual Policy Learning: Zero-Trial Robot Skill Adaptation via Knowledge Fusion,” vol. 7, no. 2, pp. 3656–3663.
  12. C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi, S. Kikuchi, T. Matsubara, and K. Harada, “Learning Force Control for Contact-rich Manipulation Tasks with Rigid Position-controlled Robots,” vol. 5, no. 4, pp. 5709–5716. [Online]. Available: http://arxiv.org/abs/2003.00628
  13. D. Son, H. Yang, and D. Lee, “Sim-to-Real Transfer of Bolting Tasks with Tight Tolerance,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9056–9063.
  14. D. Stewart and J. C. Trinkle, “An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction,” vol. 39, pp. 2673–2691.
  15. E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
  16. J. De Schutter and H. Van Brussel, “Compliant Robot Motion II. A Control Approach Based on External Control Loops,” vol. 7, no. 4, pp. 18–33. [Online]. Available: https://doi.org/10.1177/027836498800700402
  17. A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, “Adaptation of Force Control Parameters in Robotic Assembly,” vol. 45, no. 22, pp. 561–566. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667016336692
  18. H. Pham and Q.-C. Pham, “Convex Controller Synthesis for Robot Contact.” [Online]. Available: http://arxiv.org/abs/1909.04313
  19. D. Erickson, M. Weber, and I. Sharf, “Contact Stiffness and Damping Estimation for Robotic Systems,” vol. 22, no. 1, pp. 41–57. [Online]. Available: https://doi.org/10.1177/0278364903022001004
  20. D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding. [Online]. Available: http://ilpubs.stanford.edu:8090/778/?ref=https://githubhelp.com
  21. J. Roy and L. Whitcomb, “Adaptive force control of position/velocity controlled robots: Theory and experiment,” vol. 18, no. 2, pp. 121–137.
  22. M. Bogdanovic, M. Khadiv, and L. Righetti, “Learning Variable Impedance Control for Contact Sensitive Tasks.” [Online]. Available: http://arxiv.org/abs/1907.07500
  23. R. Martín-Martín, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg, “Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks.”
  24. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms.” [Online]. Available: http://arxiv.org/abs/1707.06347
  25. L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, “Asymmetric Actor Critic for Image-Based Robot Learning: 14th Robotics: Science and Systems, RSS 2018.” [Online]. Available: http://www.scopus.com/inward/record.url?scp=85127903841&partnerID=8YFLogxK
  26. “Volumetric Hierarchical Approximate Convex Decomposition,” in Game Engine Gems 3, E. Lengyel, Ed.   A K Peters/CRC Press.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nghia Vuong (5 papers)
  2. Quang-Cuong Pham (56 papers)
Citations (2)