Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Term Autonomous Ocean Monitoring with Streaming Samples (2306.06578v1)

Published 11 Jun 2023 in cs.RO

Abstract: In the autonomous ocean monitoring task, the sampling robot moves in the environment and accumulates data continuously. The widely adopted spatial modeling method - standard Gaussian process (GP) regression - becomes inadequate in processing the growing sensing data of a large size. To overcome the computational challenge, this paper presents an environmental modeling framework using a sparse variant of GP called streaming sparse GP (SSGP). The SSGP is able to handle streaming data in an online and incremental manner, and is therefore suitable for long-term autonomous environmental monitoring. The SSGP summarizes the collected data using a small set of pseudo data points that best represent the whole dataset, and updates the hyperparameters and pseudo point locations in a streaming fashion, leading to high-quality approximation of the underlying environmental model with significantly reduced computational cost and memory demand.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Arora, P. M. Furlong, R. Fitch, S. Sukkarieh, and T. Fong, “Multi-modal active perception for information gathering in science missions,” Autonomous Robots, pp. 1–27, 2018.
  2. S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic exploration with bayesian optimization,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 1816–1822.
  3. G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-mcts: Decentralized planning for multi-robot active perception,” The International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–337, 2019.
  4. J. Binney, A. Krause, and G. S. Sukhatme, “Informative path planning for an autonomous underwater vehicle,” in 2010 IEEE International Conference on Robotics and Automation.   IEEE, 2010, pp. 4791–4796.
  5. T. D. Bui, C. Nguyen, and R. E. Turner, “Streaming sparse gaussian process approximations,” in Advances in Neural Information Processing Systems, 2017, pp. 3299–3307.
  6. T. D. Bui, J. Yan, and R. E. Turner, “A unifying framework for gaussian process pseudo-point approximations using power expectation propagation,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 3649–3720, 2017.
  7. D. Burt, C. E. Rasmussen, and M. Van Der Wilk, “Rates of convergence for sparse variational gaussian process regression,” in International Conference on Machine Learning, 2019, pp. 862–871.
  8. N. Cao, K. H. Low, and J. M. Dolan, “Multi-robot informative path planning for active sensing of environmental phenomena: A tale of two algorithms,” in Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems.   International Foundation for Autonomous Agents and Multiagent Systems, 2013, pp. 7–14.
  9. W. Chen and L. Liu, “Pareto monte carlo tree search for multi-objective informative planning,” in Proceedings of Robotics: Science and Systems, FreiburgimBreisgau, Germany, June 2019.
  10. J. J. Chung, N. R. Lawrance, and S. Sukkarieh, “Learning to soar: Resource-constrained exploration in reinforcement learning,” The International Journal of Robotics Research, vol. 34, no. 2, pp. 158–172, 2015.
  11. L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3, pp. 641–668, 2002.
  12. M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19, no. 1, pp. 24–39, 2012.
  13. G. Flaspohler, N. Roy, and Y. Girdhar, “Near-optimal irrevocable sample selection for periodic data streams with applications to marine robotics,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 1–8.
  14. G. Hitz, A. Gotovos, M.-É. Garneau, C. Pradalier, A. Krause, R. Y. Siegwart et al., “Fully autonomous focused exploration for robotic environmental monitoring,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 2658–2664.
  15. G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme, “Active planning for underwater inspection and the benefit of adaptivity,” The International Journal of Robotics Research, vol. 32, no. 1, pp. 3–18, 2013.
  16. G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information gathering algorithms,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1271–1287, 2014.
  17. S. Kemna, H. Heiarsson, and G. S. Sukhatme, “On-board adaptive informative sampling for auvs: a feasibility study,” in OCEANS 2018 MTS/IEEE Charleston.   IEEE, 2018, pp. 1–10.
  18. A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies,” Journal of Machine Learning Research, vol. 9, no. Feb, pp. 235–284, 2008.
  19. X. Lan and M. Schwager, “Rapidly exploring random cycles: Persistent estimation of spatiotemporal fields with multiple sensing robots,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1230–1244, 2016.
  20. C. K. Ling, K. H. Low, and P. Jaillet, “Gaussian process planning with lipschitz continuous reward functions: Towards unifying bayesian optimization, active learning, and beyond,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.
  21. K.-C. Ma, L. Liu, H. K. Heidarsson, and G. S. Sukhatme, “Data-driven learning and planning for environmental sampling,” Journal of Field Robotics, vol. 35, no. 5, pp. 643–661, 2018.
  22. K.-C. Ma, L. Liu, and G. S. Sukhatme, “An information-driven and disturbance-aware planning method for long-term ocean monitoring,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on.   IEEE, 2016, pp. 2102–2108.
  23. ——, “Informative planning and online learning with sparse gaussian processes,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4292–4298.
  24. R. Marchant and F. Ramos, “Bayesian optimisation for intelligent environmental monitoring,” in 2012 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2012, pp. 2242–2249.
  25. D. G. Matthews, G. Alexander, M. Van Der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman, “Gpflow: A gaussian process library using tensorflow,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 1299–1304, 2017.
  26. A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein, “Nonmyopic informative path planning in spatio-temporal models,” in AAAI, vol. 10, no. 4, 2007, pp. 16–7.
  27. R. Mishra, M. Chitre, and S. Swarup, “Online informative path planning using sparse gaussian processes,” in 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO).   IEEE, 2018, pp. 1–5.
  28. P. Morere, R. Marchant, and F. Ramos, “Sequential bayesian optimization as a pomdp for environment monitoring with uavs,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 6381–6388.
  29. M. Popović, G. Hitz, J. Nieto, I. Sa, R. Siegwart, and E. Galceran, “Online informative path planning for active classification using uavs,” in 2017 IEEE international conference on robotics and automation (ICRA).   IEEE, 2017, pp. 5753–5758.
  30. J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate gaussian process regression,” Journal of Machine Learning Research, vol. 6, no. Dec, pp. 1939–1959, 2005.
  31. C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on Machine Learning.   Springer, 2003, pp. 63–71.
  32. A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using multiple robots,” Journal of Artificial Intelligence Research, vol. 34, pp. 707–755, 2009.
  33. E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in Advances in neural information processing systems, 2006, pp. 1257–1264.
  34. M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,” in Artificial Intelligence and Statistics, 2009, pp. 567–574.
Citations (3)

Summary

We haven't generated a summary for this paper yet.