Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower-depth programmable linear optical processors (2306.06397v4)

Published 10 Jun 2023 in physics.optics and cs.ET

Abstract: Programmable linear optical processors (LOPs) can have widespread applications in computing and information processing due to their capabilities to implement reconfigurable on-chip linear transformations. A conventional LOP that uses a mesh of Mach-Zehnder interferometers (MZIs) requires $2N+3$ stages of phase shifters for $N \times N$ matrices. However, it is beneficial to reduce the number of phase shifter stages to realize a more compact and lower-loss LOP, especially when long and lossy electro-optic phase shifters are used. In this work, we propose a novel structure for LOPs that can implement arbitrary matrices as long as they can be realized by previous MZI-based schemes. Through numerical analysis, we further show that the number of phase shifter stages in the proposed structure can be reduced to $N+2$ and $N+3$ for a large number of random dense matrices and sparse matrices, respectively. This work contributes to the realization of compact, low-loss, and energy-efficient programmable LOPs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. A. N. Tait, Quantifying power in silicon photonic neural networks, Phys. Rev. Appl. 17, 054029 (2022).
  2. D. A. Miller, Self-configuring universal linear optical component, Photon. Res. 1, 1 (2013).
  3. B. A. Bell and I. A. Walmsley, Further compactifying linear optical unitaries, APL Photonics 6, 070804 (2021).
  4. T. Kita and M. Mendez-Astudillo, Ultrafast silicon MZI optical switch with periodic electrodes and integrated heat sink, J. Light. Technol. 39, 5054 (2021).
  5. R. Tang, T. Tanemura, and Y. Nakano, Integrated reconfigurable unitary optical mode converter using MMI couplers, IEEE Photon. Technol. Lett. 29, 971 (2017a).
  6. R. Tang, T. Tanemura, and Y. Nakano, Robust reconfigurable optical mode mux/demux using multiport directional couplers, in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017) pp. 1–3.
  7. S. Kuzmin, I. Dyakonov, and S. Kulik, Architecture agnostic algorithm for reconfigurable optical interferometer programming, Opt. Express 29, 38429 (2021).
  8. M. Bachmann, P. A. Besse, and H. Melchior, General self-imaging properties in N ×\times× N multimode interference couplers including phase relations, Appl. Opt. 33, 3905 (1994).
  9. W.-P. Huang, Coupled-mode theory for optical waveguides: an overview, J. Opt. Soc. Am. A 11, 963 (1994).
  10. N. Hansen, The CMA evolution strategy: A tutorial (2023), arXiv:1604.00772 [cs.LG] .
  11. https://pypi.org/project/cmaes/.
  12. M. L. Cooper and S. Mookherjea, Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides, Opt. Express 17, 1583 (2009).
Citations (5)

Summary

We haven't generated a summary for this paper yet.