Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ModelObfuscator: Obfuscating Model Information to Protect Deployed ML-based Systems (2306.06112v3)

Published 1 Jun 2023 in cs.CR

Abstract: More and more edge devices and mobile apps are leveraging deep learning (DL) capabilities. Deploying such models on devices -- referred to as on-device models -- rather than as remote cloud-hosted services, has gained popularity because it avoids transmitting user data off of the device and achieves high response time. However, on-device models can be easily attacked, as they can be accessed by unpacking corresponding apps and the model is fully exposed to attackers. Recent studies show that attackers can easily generate white-box-like attacks for an on-device model or even inverse its training data. To protect on-device models from white-box attacks, we propose a novel technique called model obfuscation. Specifically, model obfuscation hides and obfuscates the key information -- structure, parameters and attributes -- of models by renaming, parameter encapsulation, neural structure obfuscation obfuscation, shortcut injection, and extra layer injection. We have developed a prototype tool ModelObfuscator to automatically obfuscate on-device TFLite models. Our experiments show that this proposed approach can dramatically improve model security by significantly increasing the difficulty of parsing models inner information, without increasing the latency of DL models. Our proposed on-device model obfuscation has the potential to be a fundamental technique for on-device model deployment. Our prototype tool is publicly available at: https://github.com/zhoumingyi/ModelObfuscator.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Mingyi Zhou (15 papers)
  2. Xiang Gao (210 papers)
  3. Jing Wu (182 papers)
  4. John Grundy (127 papers)
  5. Xiao Chen (277 papers)
  6. Chunyang Chen (86 papers)
  7. Li Li (657 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.