Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Chest X-ray Resolution Improves Classification Performance (2306.06051v2)

Published 9 Jun 2023 in cs.CV

Abstract: Deep learning models for image classification are often trained at a resolution of 224 x 224 pixels for historical and efficiency reasons. However, chest X-rays are acquired at a much higher resolution to display subtle pathologies. This study investigates the effect of training resolution on chest X-ray classification performance, using the chest X-ray 14 dataset. The results show that training with a higher image resolution, specifically 1024 x 1024 pixels, results in the best overall classification performance with a mean AUC of 84.2 % compared to 82.7 % when trained with 256 x 256 pixel images. Additionally, comparison of bounding boxes and GradCAM saliency maps suggest that low resolutions, such as 256 x 256 pixels, are insufficient for identifying small pathologies and force the model to use spurious discriminating features. Our code is publicly available at https://gitlab.lrz.de/IP/cxr-resolution

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Alessandro Wollek (7 papers)
  2. Sardi Hyska (4 papers)
  3. Bastian Sabel (5 papers)
  4. Michael Ingrisch (14 papers)
  5. Tobias Lasser (26 papers)