Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Graph Dynamics Prior for Relational Inference (2306.06041v2)

Published 9 Jun 2023 in cs.LG and stat.ML

Abstract: Relational inference aims to identify interactions between parts of a dynamical system from the observed dynamics. Current state-of-the-art methods fit the dynamics with a graph neural network (GNN) on a learnable graph. They use one-step message-passing GNNs -- intuitively the right choice since non-locality of multi-step or spectral GNNs may confuse direct and indirect interactions. But the \textit{effective} interaction graph depends on the sampling rate and it is rarely localized to direct neighbors, leading to poor local optima for the one-step model. In this work, we propose a \textit{graph dynamics prior} (GDP) for relational inference. GDP constructively uses error amplification in non-local polynomial filters to steer the solution to the ground-truth graph. To deal with non-uniqueness, GDP simultaneously fits a ``shallow'' one-step model and a polynomial multi-step model with shared graph topology. Experiments show that GDP reconstructs graphs far more accurately than earlier methods, with remarkable robustness to under-sampling. Since appropriate sampling rates for unknown dynamical systems are not known a priori, this robustness makes GDP suitable for real applications in scientific machine learning. Reproducible code is available at https://github.com/DaDaCheng/GDP.

Citations (1)

Summary

We haven't generated a summary for this paper yet.