Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sketch2Stress: Sketching with Structural Stress Awareness (2306.05911v2)

Published 9 Jun 2023 in cs.CV and cs.GR

Abstract: In the process of product design and digital fabrication, the structural analysis of a designed prototype is a fundamental and essential step. However, such a step is usually invisible or inaccessible to designers at the early sketching phase. This limits the user's ability to consider a shape's physical properties and structural soundness. To bridge this gap, we introduce a novel approach Sketch2Stress that allows users to perform structural analysis of desired objects at the sketching stage. This method takes as input a 2D freehand sketch and one or multiple locations of user-assigned external forces. With the specially-designed two-branch generative-adversarial framework, it automatically predicts a normal map and a corresponding structural stress map distributed over the user-sketched underlying object. In this way, our method empowers designers to easily examine the stress sustained everywhere and identify potential problematic regions of their sketched object. Furthermore, combined with the predicted normal map, users are able to conduct a region-wise structural analysis efficiently by aggregating the stress effects of multiple forces in the same direction. Finally, we demonstrate the effectiveness and practicality of our system with extensive experiments and user studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. G. Johnson, M. Gross, E. Y.-L. Do, and J. Hong, “Sketch it, make it: sketching precise drawings for laser cutting,” in CHI’12 Extended Abstracts on Human Factors in Computing Systems, 2012, pp. 1079–1082.
  2. O. Stava, J. Vanek, B. Benes, N. Carr, and R. Měch, “Stress relief: improving structural strength of 3d printable objects,” ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1–11, 2012.
  3. Q. Zhou, J. Panetta, and D. Zorin, “Worst-case structural analysis.” ACM Trans. Graph., vol. 32, no. 4, pp. 137–1, 2013.
  4. W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, and X. Liu, “Cost-effective printing of 3d objects with skin-frame structures,” ACM Transactions on Graphics (ToG), vol. 32, no. 6, pp. 1–10, 2013.
  5. R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung, “Make it stand: balancing shapes for 3d fabrication,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1–10, 2013.
  6. E. Ulu, J. Mccann, and L. B. Kara, “Lightweight structure design under force location uncertainty,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.
  7. J. Panetta, A. Rahimian, and D. Zorin, “Worst-case stress relief for microstructures,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–16, 2017.
  8. L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or, and B. Chen, “Build-to-last: Strength to weight 3d printed objects,” ACM Transactions on Graphics (ToG), vol. 33, no. 4, pp. 1–10, 2014.
  9. T. Langlois, A. Shamir, D. Dror, W. Matusik, and D. I. Levin, “Stochastic structural analysis for context-aware design and fabrication,” ACM Transactions on Graphics (TOG), vol. 35, no. 6, pp. 1–13, 2016.
  10. M. Miki, T. Igarashi, and P. Block, “Parametric self-supporting surfaces via direct computation of airy stress functions,” ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1–12, 2015.
  11. J. Zehnder, S. Coros, and B. Thomaszewski, “Designing structurally-sound ornamental curve networks,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–10, 2016.
  12. J. Dumas, A. Lu, S. Lefebvre, J. Wu, and C. Dick, “By-example synthesis of structurally sound patterns,” ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1–12, 2015.
  13. G. Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and C. C. Wang, “Reinforced fdm: Multi-axis filament alignment with controlled anisotropic strength,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020.
  14. M. Yao, Z. Chen, L. Luo, R. Wang, and H. Wang, “Level-set-based partitioning and packing optimization of a printable model,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1–11, 2015.
  15. C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, “Microstructures to control elasticity in 3d printing,” ACM Transactions on Graphics (Tog), vol. 34, no. 4, pp. 1–13, 2015.
  16. Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, “3d shape reconstruction from sketches via multi-view convolutional networks,” in 3DV’ 2017, pp. 67–77.
  17. C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang, “Robust flow-guided neural prediction for sketch-based freeform surface modeling,” ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1–12, 2018.
  18. J. Delanoy, M. Aubry, P. Isola, A. A. Efros, and A. Bousseau, “3d sketching using multi-view deep volumetric prediction,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 1, no. 1, pp. 1–22, 2018.
  19. D. Smirnov, M. Bessmeltsev, and J. Solomon, “Learning manifold patch-based representations of man-made shapes,” in ICLR’ 2021.
  20. S.-H. Zhang, Y.-C. Guo, and Q.-W. Gu, “Sketch2model: View-aware 3d modeling from single free-hand sketches,” in CVPR’ 2021, pp. 6012–6021.
  21. B. Guillard, E. Remelli, P. Yvernay, and P. Fua, “Sketch2mesh: Reconstructing and editing 3d shapes from sketches,” in ICCV’ 2021, pp. 13 023–13 032.
  22. N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2mesh: Generating 3d mesh models from single rgb images,” in ECCV’ 2018), pp. 52–67.
  23. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in CVPR’ 2017, pp. 1125–1134.
  24. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution image synthesis and semantic manipulation with conditional gans,” in CVPR’ 2018, pp. 8798–8807.
  25. L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d reconstruction in function space,” in CVPR’ 2019, pp. 4460–4470.
  26. A. Telea and A. Jalba, “Voxel-based assessment of printability of 3d shapes,” in International symposium on mathematical morphology and its applications to signal and image processing.   Springer, 2011, pp. 393–404.
  27. T. HUGHES, “The finite element method,” Linear Static and Dynamic Finite Element Analysis, 1987.
  28. W. Su, D. Du, X. Yang, S. Zhou, and H. Fu, “Interactive sketch-based normal map generation with deep neural networks,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 1, no. 1, pp. 1–17, 2018.
  29. J. Jiao, Y. Cao, M. Lau, and R. Lau, “Tactile sketch saliency,” in Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 3072–3080.
  30. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in ICML’ 2015, pp. 2256–2265.
  31. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” NeurIPS’ 2020, vol. 33, pp. 6840–6851, 2020.
  32. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  33. C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “Sdedit: Guided image synthesis and editing with stochastic differential equations,” in ICLR’ 2021.
  34. A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen, “Glide: Towards photorealistic image generation and editing with text-guided diffusion models,” arXiv preprint arXiv:2112.10741, 2021.
  35. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, 2022.
  36. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  37. D. Du, X. Han, H. Fu, F. Wu, Y. Yu, S. Cui, and L. Liu, “Sanihead: Sketching animal-like 3d character heads using a view-surface collaborative mesh generative network,” IEEE Transactions on Visualization and Computer Graphics, 2020.
  38. Y. Wang, S. Asafi, O. Van Kaick, H. Zhang, D. Cohen-Or, and B. Chen, “Active co-analysis of a set of shapes,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, pp. 1–10, 2012.
  39. D. Stutz and A. Geiger, “Learning 3d shape completion under weak supervision,” International Journal of Computer Vision, vol. 128, no. 5, pp. 1162–1181, 2020.
  40. H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer, “Upright orientation of man-made objects,” in ACM SIGGRAPH 2008 papers, 2008, pp. 1–7.
  41. J. Canny, “A computational approach to edge detection,” IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.
  42. O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or, “Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering,” in Proceedings of the 2011 SIGGRAPH Asia Conference, 2011, pp. 1–10.
  43. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” NeurIPS’ 2019, vol. 32.
  44. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of the thirteenth international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
  45. J. Zhou, Z. Luo, Q. Yu, X. Han, and H. Fu, “Ga-sketching: Shape modeling from multi-view sketching with geometry-aligned deep implicit functions,” arXiv preprint arXiv:2309.05946, 2023.
  46. D. Yu, M. Lau, L. Gao, and H. Fu, “Sketch beautification: Learning part beautification and structure refinement for sketches of man-made objects,” arXiv preprint arXiv:2306.05832, 2023.
  47. Y. Gryaditskaya, M. Sypesteyn, J. W. Hoftijzer, S. C. Pont, F. Durand, and A. Bousseau, “Opensketch: a richly-annotated dataset of product design sketches.” ACM Trans. Graph., vol. 38, no. 6, pp. 232–1, 2019.
  48. N. Umetani and R. M. Schmidt, “Cross-sectional structural analysis for 3d printing optimization.” in SIGGRAPH Asia technical briefs.   Citeseer, 2013, pp. 5–1.
  49. D. Yu, L. Li, Y. Zheng, M. Lau, Y.-Z. Song, C.-L. Tai, and H. Fu, “Sketchdesc: Learning local sketch descriptors for multi-view correspondence,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 5, pp. 1738–1750, 2020.

Summary

We haven't generated a summary for this paper yet.