Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bring Your Own (Non-Robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel (2306.05859v2)

Published 9 Jun 2023 in cs.LG

Abstract: Robust Markov Decision Processes (RMDPs) provide a framework for sequential decision-making that is robust to perturbations on the transition kernel. However, current RMDP methods are often limited to small-scale problems, hindering their use in high-dimensional domains. To bridge this gap, we present EWoK, a novel online approach to solve RMDP that Estimates the Worst transition Kernel to learn robust policies. Unlike previous works that regularize the policy or value updates, EWoK achieves robustness by simulating the worst scenarios for the agent while retaining complete flexibility in the learning process. Notably, EWoK can be applied on top of any off-the-shelf {\em non-robust} RL algorithm, enabling easy scaling to high-dimensional domains. Our experiments, spanning from simple Cartpole to high-dimensional DeepMind Control Suite environments, demonstrate the effectiveness and applicability of the EWoK paradigm as a practical method for learning robust policies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com