Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random matrix theory and nested clustered portfolios on Mexican markets (2306.05667v1)

Published 9 Jun 2023 in q-fin.ST, physics.soc-ph, and q-fin.PM

Abstract: This work aims to deal with the optimal allocation instability problem of Markowitz's modern portfolio theory in high dimensionality. We propose a combined strategy that considers covariance matrix estimators from Random Matrix Theory~(RMT) and the machine learning allocation methodology known as Nested Clustered Optimization~(NCO). The latter methodology is modified and reformulated in terms of the spectral clustering algorithm and Minimum Spanning Tree~(MST) to solve internal problems inherent to the original proposal. Markowitz's classical mean-variance allocation and the modified NCO machine learning approach are tested on financial instruments listed on the Mexican Stock Exchange~(BMV) in a moving window analysis from 2018 to 2022. The modified NCO algorithm achieves stable allocations by incorporating RMT covariance estimators. In particular, the allocation weights are positive, and their absolute value adds up to the total capital without considering explicit restrictions in the formulation. Our results suggest that can be avoided the risky \emph{short position} investment strategy by means of RMT inference and statistical learning techniques.

Summary

We haven't generated a summary for this paper yet.