Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A shape derivative approach to domain simplification (2306.05384v1)

Published 8 Jun 2023 in math.NA and cs.NA

Abstract: The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional hierarchical B-spline computational domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.