Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine-Learning Kronecker Coefficients (2306.04734v1)

Published 7 Jun 2023 in math.RT, math.CO, and stat.ML

Abstract: The Kronecker coefficients are the decomposition multiplicities of the tensor product of two irreducible representations of the symmetric group. Unlike the Littlewood--Richardson coefficients, which are the analogues for the general linear group, there is no known combinatorial description of the Kronecker coefficients, and it is an NP-hard problem to decide whether a given Kronecker coefficient is zero or not. In this paper, we show that standard machine-learning algorithms such as Nearest Neighbors, Convolutional Neural Networks and Gradient Boosting Decision Trees may be trained to predict whether a given Kronecker coefficient is zero or not. Our results show that a trained machine can efficiently perform this binary classification with high accuracy ($\approx 0.98$).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com