2000 character limit reached
Grading of affine Weyl semi-groups of Kac-Moody type (2306.04514v3)
Published 7 Jun 2023 in math.RT and math.CO
Abstract: For any Kac-Moody root data $\mathcal D$, D. Muthiah and D. Orr have defined a partial order on the semi-direct product $W+$ of the integral Tits cone with the vectorial Weyl group of $\mathcal D$, and a strictly compatible $\mathbb Z$-valued length function. We classify covers for this order and show that this length function defines a $\mathbb Z$-grading of $W+$, generalizing the case of affine ADE root systems and giving a positive answer to a conjecture of Muthiah and Orr.