Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Antimagic Coloring of Some Graphs (2306.03559v2)

Published 6 Jun 2023 in math.CO

Abstract: Given a graph $G =(V,E)$, a bijection $f: E \rightarrow {1, 2, \dots,|E|}$ is called a local antimagic labeling of $G$ if the vertex weight $w(u) = \sum_{uv \in E} f(uv)$ is distinct for all adjacent vertices. The vertex weights under the local antimagic labeling of $G$ induce a proper vertex coloring of a graph $G$. The \textit{local antimagic chromatic number} of $G$ denoted by $\chi_{la}(G)$ is the minimum number of weights taken over all such local antimagic labelings of $G$. In this paper, we investigate the local antimagic chromatic numbers of the union of some families of graphs, corona product of graphs, and necklace graph and we construct infinitely many graphs satisfying $\chi_{la}(G) = \chi(G)$.

Summary

We haven't generated a summary for this paper yet.