Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal spectral behavior of weighted random $d$-regular graphs (2306.03479v1)

Published 6 Jun 2023 in math.PR, cs.DM, and math.CO

Abstract: Analyzing the spectral behavior of random matrices with dependency among entries is a challenging problem. The adjacency matrix of the random $d$-regular graph is a prominent example that has attracted immense interest. A crucial spectral observable is the extremal eigenvalue, which reveals useful geometric properties of the graph. According to the Alon's conjecture, which was verified by Friedman, the (nontrivial) extremal eigenvalue of the random $d$-regular graph is approximately $2\sqrt{d-1}$. In the present paper, we analyze the extremal spectrum of the random $d$-regular graph (with $d\ge 3$ fixed) equipped with random edge-weights, and precisely describe its phase transition behavior with respect to the tail of edge-weights. In addition, we establish that the extremal eigenvector is always localized, showing a sharp contrast to the unweighted case where all eigenvectors are delocalized. Our method is robust and inspired by a sparsification technique developed in the context of Erd\H{o}s-R\'{e}nyi graphs (Ganguly and Nam, '22), which can also be applied to analyze the spectrum of general random matrices whose entries are dependent.

Citations (1)

Summary

We haven't generated a summary for this paper yet.