Papers
Topics
Authors
Recent
2000 character limit reached

Learning-Based Heuristic for Combinatorial Optimization of the Minimum Dominating Set Problem using Graph Convolutional Networks

Published 6 Jun 2023 in cs.LG and cs.DM | (2306.03434v1)

Abstract: A dominating set of a graph $\mathcal{G=(V, E)}$ is a subset of vertices $S\subseteq\mathcal{V}$ such that every vertex $v\in \mathcal{V} \setminus S$ outside the dominating set is adjacent to a vertex $u\in S$ within the set. The minimum dominating set problem seeks to find a dominating set of minimum cardinality and is a well-established NP-hard combinatorial optimization problem. We propose a novel learning-based heuristic approach to compute solutions for the minimum dominating set problem using graph convolutional networks. We conduct an extensive experimental evaluation of the proposed method on a combination of randomly generated graphs and real-world graph datasets. Our results indicate that the proposed learning-based approach can outperform a classical greedy approximation algorithm. Furthermore, we demonstrate the generalization capability of the graph convolutional network across datasets and its ability to scale to graphs of higher order than those on which it was trained. Finally, we utilize the proposed learning-based heuristic in an iterative greedy algorithm, achieving state-of-the-art performance in the computation of dominating sets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.