Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Parameterized Complexity of Computing $st$-Orientations with Few Transitive Edges (2306.03196v2)

Published 5 Jun 2023 in cs.DS and cs.CG

Abstract: Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

Citations (2)

Summary

We haven't generated a summary for this paper yet.