Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation-agnostic distance-driven perturbation for optimizing ill-conditioned problems (2306.02985v1)

Published 5 Jun 2023 in cs.NE

Abstract: Locality is a crucial property for efficiently optimising black-box problems with randomized search heuristics. However, in practical applications, it is not likely to always find such a genotype encoding of candidate solutions that this property is upheld with respect to the Hamming distance. At the same time, it may be possible to use domain-specific knowledge to define a metric with locality property. We propose two mutation operators to solve such optimization problems more efficiently using the metric. The first operator assumes prior knowledge about the distance, the second operator uses the distance as a black box. Those operators apply an estimation of distribution algorithm to find the best mutant according to the defined in the paper function, which employs the given distance. For pseudo-boolean and integer optimization problems, we experimentally show that both mutation operators speed up the search on most of the functions when applied in considered evolutionary algorithms and random local search. Moreover, those operators can be applied in any randomized search heuristic which uses perturbations. However, our mutation operators increase wall-clock time and so are helpful in practice when distance is (much) cheaper to compute than the real objective function.

Summary

We haven't generated a summary for this paper yet.